
VEC Implementation Guidelines
The VDA recommendation 4968 / prostep ivip recommendation PSI21 “Vehicle Electric Container (VEC)” de�nes an information model, a data dictionary, a

XML schema and a RDF onthology derived from and compliant to the model.The intention of the model was to cover a wide range of use cases and
application scenarios. For this reason the speci�cation had to be kept generic in some degree and in some aspects. However, for speci�c scenarios and / or

use cases a more detailed description on “how the different pieces �t together” is possible.

To avoid dialects in the different VEC implementations, further guidelines or recommendations are necessary. This collection of implementation guidelines

contributes to the unambiguous interpretation of the VEC standard. For various wiring harness de�nition or electrical system aspects and scenarios the

correct instantiation is shown and speci�c hints for correct usage are given.

Contributing and Proposals

If you �nd any bugs in the implementation guidelines or if you have a request for a speci�c topic, or if you would like to contribute your own tutorials please

drop us an issue on the PROSTEP JIRA. If you don’t have an account there yet, see here for the procedure to get one.

Additional Resources

  VEC Implementation Guidelines

  VEC Implementation Guidelines (PDF-Version)

Latest Changes

The following table contains lately changed pages, sorted descending by last change.

Title Latest Content Addition / Commit Created Changed

RDF / OWL Representation Added �rst version of the description
Latest Commit: KBLFRM-1230: Refactored structure for VEC-package. Clari�ed �lename format.

2024-02-22 2024-03-19

General Structure of VEC Files & Documents KBLFRM-996: Integrated Review Comments for the whole page
Latest Commit: KBLFRM-1230: Refactored structure for VEC-package. Clari�ed �lename format.

2020-06-22 2024-03-19

External References KBLFRM-1046: Added Guideline for External References

Latest Commit: KBLFRM-1230: Refactored structure for VEC-package. Clari�ed �lename format.

2022-08-25 2024-03-19

VEC-Package KBLFRM-1230: Consolidated information about the VEC package, added path
format
Latest Commit: KBLFRM-1230: Refactored structure for VEC-package. Clari�ed �lename format.

2024-03-14 2024-03-19

Instantiation of Model Structures KBLFRM-1191: Extracted information from PSI recommendation and extended

it where necesseray.
Latest Commit: KBLFRM-1190: Moved content from Recommendation to Impl.-Guidelines and added

docs for mandatory doubles.

2024-03-14 2024-03-14

Default- and Missing-Value Handling KBLFRM-1191: Extracted information from PSI recommendation and extended

it where necesseray.
Latest Commit: KBLFRM-1190: Moved content from Recommendation to Impl.-Guidelines and added

docs for mandatory doubles.

2024-03-14 2024-03-14

Type Inheritance KBLFRM-1191: Extracted information from PSI recommendation and extended

it where necesseray.
Latest Commit: KBLFRM-1190: Moved content from Recommendation to Impl.-Guidelines and added

docs for mandatory doubles.

2024-03-14 2024-03-14

Extension Mechanisms KBLFRM-1191: Extracted information from PSI recommendation and extended

it where necesseray.
Latest Commit: KBLFRM-1190: Moved content from Recommendation to Impl.-Guidelines and added

docs for mandatory doubles.

2024-03-14 2024-03-14

Handling of Identi�ers KBLFRM-1191: Extracted information from PSI recommendation and extended

it where necesseray.
Latest Commit: KBLFRM-1190: Moved content from Recommendation to Impl.-Guidelines and added

docs for mandatory doubles.

2024-03-14 2024-03-14

General Guidelines KBLFRM-1191: Extracted information from PSI recommendation and extended

it where necesseray.
Latest Commit: KBLFRM-1190: Moved content from Recommendation to Impl.-Guidelines and added

docs for mandatory doubles.

2024-03-14 2024-03-14

1 General Guidelines

Until V1.2 this section was part of the PSI21 - prostep ivip Recommendation - VEC. This section contains important guidelines for handling VEC

data and was previously only available in the actual recommendation document, in contrast to the model speci�cation, which can also be viewed


https://prostep-ivip.atlassian.net/projects/KBLFRM/
http://localhost:8080/post/how-to-contribute/
http://localhost:8080/specifications/vec/guidelines/
https://ecad-wiki.prostep.org/specifications/vec/guidelines/vec-guidelines.pdf
http://localhost:8080/specifications/vec/guidelines/general/rdf-owl/
http://localhost:8080/specifications/vec/guidelines/key-concepts/general-structure/
https://prostep-ivip.atlassian.net/browse/KBLFRM-996
http://localhost:8080/specifications/vec/guidelines/general/external-references/
https://prostep-ivip.atlassian.net/browse/KBLFRM-1046
http://localhost:8080/specifications/vec/guidelines/general/vec-package/
https://prostep-ivip.atlassian.net/browse/KBLFRM-1230
http://localhost:8080/specifications/vec/guidelines/general/instantiation/
https://prostep-ivip.atlassian.net/browse/KBLFRM-1191
http://localhost:8080/specifications/vec/guidelines/general/default-values/
https://prostep-ivip.atlassian.net/browse/KBLFRM-1191
http://localhost:8080/specifications/vec/guidelines/general/type-inheritance/
https://prostep-ivip.atlassian.net/browse/KBLFRM-1191
http://localhost:8080/specifications/vec/guidelines/general/extensions/
https://prostep-ivip.atlassian.net/browse/KBLFRM-1191
http://localhost:8080/specifications/vec/guidelines/general/identifiers/
https://prostep-ivip.atlassian.net/browse/KBLFRM-1191
http://localhost:8080/specifications/vec/guidelines/general/
https://prostep-ivip.atlassian.net/browse/KBLFRM-1191
https://www.prostep.org/shop/detail?ai%5Baction%5D=detail&ai%5Bcontroller%5D=Catalog&ai%5Bd_name%5D=psi_21&ai%5Bd_pos%5D=


This section contains guidlines and explanations for general concepts that apply universally to the VEC and which are not limited to speci�c model elements

or use cases. Therefore they not contained in the model speci�cation, or in more speci�c implementation guidelines. These guidelines shall be followed for

all VEC implementations.

1.1 RDF / OWL Representation

Various initiatives in the recent past have shown an increase in the importance of semantic models and the use of ontologies in industry (e.g. Catena-X). For

this reason, and due to the opportunities and potential of this technology, it has been decided to also publish the VEC as an ontology in the future (starting in

2024). This should facilitate the creation of VEC-based solutions in the area of the Semantic Web / Linked Data / Knowledge Graphs and enable a simple

transition between the different worlds.

The RDF variant of the VEC is intended as an additional technical representation of the underlying UML model, in addition to the XML schema variant that has
existed since the beginning. This is not a replacement or discontinuation of the previous approach, but rather an extension of the toolbox for application

scenarios in which the more monolithic representation as an XML structure appears less suitable (e.g. distributed development in dataspace / cloud

architectures). Nevertheless, the XML variant will retain its raison d’être in the future for use cases in which a compact and complete representation is

required (e.g. archiving or passing on de�ned development statuses).

Like the XML schema, the ontology and the associated SHACL schema are derived automatically and directly from the UML model of the VEC. This means

that the model, the XML schema and the ontology should be consistent with each other at all times for a speci�c VEC version.

1.1.0.1 RDF Snippets

The following sections contain snippets of the transformation results. All excerpts are de�ned in RDF Turtle. The following namespace de�nitions are used:

1.1.1 UML to OWL

1.1.1.1 VEC Namespace

The namespace of the VEC ontology is: http://www.prostep.org/ontologies/ecad/2024/03/vec#. The recommended namespace pre�x is vec (used in

the ECAD-WIKI for any example). The owl:versionIRI is http://www.prostep.org/ontologies/ecad/2024/03/vec/<version>#, e.g.

http://www.prostep.org/ontologies/ecad/2024/03/vec/2.1.0# for every VEC version.

1.1.1.2 General

The following mapping rules apply to all elements:

1. If a UML model element is mapped into RDF, the documentation in the model is mapped to rdfs:comment.

2. Regardless of the pattern used to create the IRI of an element, the name of the element in the UML model is used as the rdfs:label.

1.1.1.3 Classes

Regular classes in the UML Model (see �gure below for an example form the VEC) are mapped to RDF in the following form.

online here. In order to achieve better availability of the information and to avoid it being overlooked if only the online documentation is consulted,

it was decided to move this chapter to the Implementation Guideline. This approach also makes it easier and quicker to expand and supplement

the content if necessary.

Disclaimer: This page or section is currently under review by the community.

The content of this page or section can be subject to change at any time. If you �nd any issues or if you have any review comments please drop us

an issue on the PROSTEP JIRA.

⚠

The �rst version of the VEC ontologies has been published in March 2024. Currently the ontologies have a “preview” state. This means that the

translation logic from the UML model to the ontology is currently under review. Comments on this are welcome at any time. However, this also
means that adjustments to the translation conventions and thus to the resulting ontologies may still be possible.

⚠

@prefix :     <http://www.prostep.org/ontologies/ecad/2024/03/vec#> .

@prefix owl:  <http://www.w3.org/2002/07/owl#> .

@prefix rdf:  <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix vec:  <http://www.prostep.org/ontologies/ecad/2024/03/vec#> .

@prefix xs:   <http://www.w3.org/2001/XMLSchema#> .

https://www.w3.org/TR/turtle/
https://prostep-ivip.atlassian.net/projects/KBLFRM/


FIGURE 1:  VEC UML Model - Classes

1. The name of the class is used as IRI (within the VEC-namespace).

2. Class names begin with an upper case letter.

3. The rdf:type is owl:Class.

4. Inheritance in the UML model is mapped to rdfs:subClassOf.

For the class ItemVersion the mapping is the following.

Since the VEC uses a object oriented design concept multiple inheritance of classes is not allowed. This is translated to owl:AllDisjointClasses

statements for subclasses of a speci�c class.

1.1.1.4 Enumerations

Enumerations are sets of prede�ned values. The VEC de�nes two concept for enumerations, Open and Closed enumerations (see Open and Closed

Enumerations). You can �nd two examples in the �gure below.

FIGURE 2:  VEC UML Model - Enumerations

For the translation into RDF enumerations are treated as regular classes, in contrast to XML Schema, where an enumeration is just a xs:restriction on the

xs:string datatype. To distinguish enumerations from regular VEC classes, the classes Enumeration, OpenEnumeration and ClosedEnumeration are

explicitly de�ned in the ontology as follows (rdfs:comment and rdfs:label omitted).

vec:ItemVersion  rdf:type  owl:Class;

        rdfs:comment     "Abstract super-class for physical objects ..."@en;
        rdfs:label       "ItemVersion"@en;
        rdfs:subClassOf  vec:ExtendableElement .

[ rdf:type     owl:AllDisjointClasses;

  owl:members  ( vec:DocumentVersion vec:PartVersion )

] .

vec:Enumeration rdf:type owl:Class .

vec:OpenEnumeration 

        rdf:type         owl:Class;

        rdfs:subClassOf  vec:Enumeration .

vec:ClosedEnumeration 

        rdf:type         owl:Class;

        rdfs:subClassOf  vec:Enumeration .

vec:enumLiteral 

        rdf:type            owl:DatatypeProperty;

        rdfs:domain         vec:Enumeration;

        rdfs:range          xs:string;

        rdfs:subPropertyOf  rdfs:label .

http://localhost:8080/specifications/vec/v210/basic-datatypes/open-and-closed-enumerations/
http://localhost:8080/specifications/vec/v210/basic-datatypes/open-and-closed-enumerations/


The naming conventions for enumerations are the same as for regular classes. In addition, every Enumeration has a data property enumLiteral for the

actual enum string value, as de�ned in the model. An enumeration in the UML model is translated to RDF as a subclass of OpenEnumeration or

ClosedEnumeration. The Literals are translated as owl:NamedIndividuals of the class, the IRIs of the literals are created with the pattern:

“<ClassName>_<LiteralName>”

For OpenEnumerations the extension with new custom literals is straight forward. They can be easily de�ned as new individuals of the corresponding enum

class. However, the should be de�ned in an appropriate namespace and not in VEC-namespace. The enumeration above could be extended for example like

this:

In contrast to OpenEnumerations, ClosedEnumerations should not be extendable. Their set of enumeration values is prede�ned and closed. This semantic is

expressed in the ontology representation by an equivalence axiom similar to the following:

1.1.1.5 Primitives

The UML Model uses several primitive datatypes. The mapping to XML Schema datatypes, which are also used as primitive datatypes in RDF is the following:

1.1.1.6 Associations & Attributes

The following mapping rules apply for attributes & associations:

1. In order to have a general, context free and simple translation rule, that creates stable and reproducible IRIs for properties, the IRI is always fully

quali�ed. It is created with the pattern: “<ClassName><RoleName>” where �rst letter of <ClassName> is lower case and the �rst letter of <RoleName> is

upper case.

2. All primitive properties are mapped to owl:DataProperty, all other properties are mapped to owl:ObjectProperty.

vec:SegmentCrossSectionAreaType

        rdf:type         owl:Class;

        rdfs:subClassOf  vec:OpenEnumeration .

vec:SegmentCrossSectionAreaType_Reserved

        rdf:type         vec:SegmentCrossSectionAreaType , owl:NamedIndividiual;

        vec:enumLiteral  "Reserved" .

vec:SegmentCrossSectionAreaType_Real

        rdf:type         vec:SegmentCrossSectionAreaType , owl:NamedIndividiual;

        vec:enumLiteral  "Real" .        

acme:SegmentCrossSectionAreaType_MyCustomLiteral

        rdf:type         vec:SegmentCrossSectionAreaType , owl:NamedIndividiual;

        vec:enumLiteral  "MyCustomLiteral" .   

vec:ValueDetermination

        rdf:type             owl:Class;

        rdfs:subClassOf      vec:ClosedEnumeration;

        owl:equivalentClass  [ rdf:type   owl:Class;

                               owl:oneOf  ( vec:ValueDetermination_Calculated vec:ValueDetermination_Measured vec:ValueDetermination_Estimated )

                             ] .

String=xs:string

Double=xs:double

Integer=xs:integer

Int=xs:integer

Boolean=xs:boolean

Date=xs:dateTime

Remarks about IRIs for Associations & Attributes

The VEC UML model identi�es attributes and associations by their role name (compare �gure VEC UML Model - Classes above), for example

abbreviation in the class ItemVersion or referencedPart in the class DocumentVersion. Those role names are only unique within the de�ning class

and not in the entire model.

There are cases where two classes in VEC model de�ne an attribute with the same name and both attributes have in fact the same semantic (e.g.
Identi�cation or aliasId). However, there are also multiple locations, where the same name is used for different semantics (e.g. CurrentInformation
is used in some context as information about the maximum current, and in another context as information about the regular operating currents).

The following approaches were considered for IRI generation for properties, but rejected after careful consideration:

1. Opaque Names, like p1243 are a common approach to this problem. However, support of such an approach would have been a major

extension to VECs the existing modelling infrastructure, switching between the classic XML-based World and RDF would be signi�cantly

more di�cult and human readability data would be signi�cantly more limited, which in turn might compromise the acceptance of the RDF
representation.

2. Using Property Names alone. This approach would have been �ne, if all property names are unique within the model or have exactly the

same semantic. However, as this is not the case, this blurring would result in various problems. Starting for example with simple things like

properties with the same name have different data types. De�ning rdfs:domain/range statements on those properties would lead to

inconsistencies or contradictions.

3. Qualifying ambiguous property names only. Translation rules would depend on the model history. If a unique property gets a new “twin” at

some point, quali�cation would be necessary. However, the former unique property must retain its name for stability / backwards
compatibility. This would lead to an incomprehensible situation as to why which property is fully quali�ed and when and which is not.





3. rdfs:range/domain statements are created, corresponding to the declaring class and the datatype of the property.

4. All properties that represent a “containment” are mapped as rdfs:subPropertyOf vec:contains (explained further down). Containments are all

attributes and all associations modelled as composite.

To map the hierarchical structure of the VEC, two general properties are de�ned as follows:

Ordered & Non-Unique

The VEC model allows attributes & compositions to Ordered and associations to Ordered and/or Non-Unique. See the �gure below for the different cases.

Side Note: Non-Uniqueness is only possible for associations.

FIGURE 3:  VEC UML Model - Ordered / Non-Unique

Ordered means that the elements of the property / association have a speci�ed order that has de�ned semantic in the domain. For example the order

of the TopologySegment in a Path de�nes the order in which a wire is routed through the topology.

Non-Unique means, that the same two element can be associated multiple times and that the number of associations is relevant.

Since RDF is a pure triple representation, there is no native way to represent order or non-uniqueness, in contrast to XML where all associations are ordered

and non-unique per default. To represent these semantics in the VEC ontology additional model elements are introduced.

To express “order” as a general concept the class Ordered is de�ned as follows:

For all attributes & compositions order is de�ned within the context of the “container”. In consequence, there is only one order for each element, as there is

only one container for each element. Therefore, the order can be “stored” in the element itself. In other words, all element that are contained in an ordered

attribute or composition are also Ordered. In the ontology, this is expressed by the following triple:

vec:itemVersionCompanyName

        rdf:type      owl:DatatypeProperty;

        rdfs:domain   vec:ItemVersion;

        rdfs:label    "companyName"@en;
        rdfs:range    xs:string .

vec:itemVersionAbbreviation

        rdf:type            owl:ObjectProperty;

        rdfs:domain         vec:ItemVersion;

        rdfs:label          "abbreviation"@en;
        rdfs:range          vec:LocalizedString;

        rdfs:subPropertyOf  vec:contains .

vec:contains  

        rdf:type  owl:ObjectProperty;

        rdfs:comment  "This is the representation of the containment modeled in the UML. All associations that are a \"containment\" in the UML model are subproperti

        rdfs:label    "contains"@en .

vec:parent  

        rdf:type   owl:ObjectProperty;

        rdfs:comment   "The inverse of 'contains'."@en;
        rdfs:label     "parent"@en;
        owl:inverseOf  vec:contains .

vec:Ordered  

        rdf:type  owl:Class;

        rdfs:comment  "Class of elements that are ordered within their containment."@en;
        rdfs:label    "Ordered"@en .

vec:orderedIndex  

        rdf:type  owl:DataProperty;

        rdfs:comment  "Defines the order of Ordered elements. Lower indices are further forward in a list. 0 is the lowest index, i.e. the first element."@en;
        rdfs:domain   vec:Ordered;

        rdfs:range    xs:nonNegativeInteger .

http://localhost:8080/specifications/vec/v210/classes/topologysegment/
http://localhost:8080/specifications/vec/v210/classes/path/


With associations, the same object can be referenced multiple times and receive different orders for each referencing. For example, a segment can occur in

different paths and in different places. In these cases, a wrapper class is created in the ontology for the target class. The wrapper participates

unambiguously in association in the context of the source object and references the actual target object. This allows the non-unique semantics to be
mapped. If ordering is also required, it is applied to the wrapper class, analogous to the mapping attributes and composition. For the Path /

TopologySegment the resulting partial ontology is the following:

1.1.2 UML to SHACL

In addition to the ontology, a SHACL schema is derived from the UML model to allow validation of RDF graphs similar to the classic XML schema.

1.1.2.1 Namespace

The namespace of the SHACL Shapes is http://www.prostep.org/ontologies/ecad/2024/03/vec-shacl# the recommended pre�x is vecsh.

1.1.2.2 Classes

For each class a <ClassName>Shape is created, similar to the one listed below (shortened for readability). Constraints for cardinalities of associations and

target types are generated.

The constraints above ensure only the target types (objects) of the properties. Without additional constraints, a property could be used on any class as

subject. To ensure that all properties are only used on the classes that declare the property in the UML model, for each class <ClassName>InverseShape is
created, similar to the following one:

Ordered / Non-Unique

For Ordered and Non-Unique attributes & associations the constraints are generated accordingly to the pattern described in the UML to OWL mapping

section (see above).

vec:cavitySpecificationAngle

        rdf:type            owl:ObjectProperty;

        rdfs:domain         vec:CavitySpecification;

        rdfs:label          "angle"@en;
        rdfs:range          vec:NumericalValue , vec:Ordered;

        rdfs:subPropertyOf  vec:contains .

vec:pathSegment  

        rdf:type   owl:ObjectProperty;

        rdfs:domain         vec:Path;

        rdfs:label          "segment"@en;
        rdfs:range          vec:TopologySegmentWrapper , vec:Ordered;

        rdfs:subPropertyOf  vec:contains .

vec:TopologySegmentWrapper

        rdf:type         owl:Class;

        rdfs:comment     "Container class for TopologySegment to participate in non-unique and/or ordered associations.".

vec:topologySegmentWrapperItem

        rdf:type      owl:ObjectProperty;

        rdfs:comment  "References the actual item for a Wrapper.";

        rdfs:domain   vec:TopologySegmentWrapper;

        rdfs:range    vec:TopologySegment .

vecsh:ItemVersionShape

        rdf:type         sh:NodeShape;

        rdfs:subClassOf  vecsh:ExtendableElementShape;

        sh:property      [ sh:class     vec:CopyrightInformation;

                           sh:maxCount  1;

                           sh:minCount  0;

                           sh:path      vec:itemVersionCopyrightInformation

                         ];

        #... more properties here ...
        sh:property      [ sh:datatype  xs:string;

                           sh:maxCount  1;

                           sh:minCount  1;

                           sh:path      vec:itemVersionCompanyName

                         ];

        sh:property      [ sh:class     vec:ChangeDescription;

                           sh:minCount  0;

                           sh:path      vec:itemVersionChangeDescription

                         ];

        sh:targetClass   vec:ItemVersion .

vecsh:ItemVersionInverseShape

        rdf:type             sh:NodeShape;

        rdfs:subClassOf      vecsh:ExtendableElementInverseShape;

        sh:class             vec:ItemVersion;

        sh:targetSubjectsOf  vec:itemVersionChangeDescription , vec:itemVersionCompanyName , vec:itemVersionCopyrightInformation 

        #... more properties here ...
        .         

http://localhost:8080/specifications/vec/v210/classes/path/
http://localhost:8080/specifications/vec/v210/classes/topologysegment/
https://www.w3.org/TR/shacl/


1.1.2.3 Enumerations

A general EnumerationShape is create to ensure that all enumerations de�ne a vec:enumLiteral. For each enumerations an individual

<ClassName>EnumShape is created to ensure that only de�ned literals are used. For OpenEnumerations the sh:severity of such “violations” is lowered to

sh:Info since the addition of new literals is explicitly allowed, but custom literals should reported nevertheless.

1.2 Handling of Identi�ers

The VEC and its XML Schema offer different concepts for the identi�cation of model elements addressing certain requirements and those shall be used

accordingly.

1.2.1 Identification-Properties (VEC Model)

Many types de�ned in the VEC model have an “Identi�cation” property (e.g. the OccurrenceOrUsage). This is meant to be a semantic identi�er of the object

represented by the VEC element. The following rules apply to those identi�ers:

1. The expectations de�ned in the documentation of the VEC model of the corresponding attribute shall be ensured.

2. The identi�cations shall be unique for a certain element type, at least within its context element. In other words, the VEC model and its representation

as XML Schema is a hierarchical data model. That means, that an identi�cation shall be at least unique within its direct parent element (e.g. the

identi�cation of a HousingComponent shall be unique within its EEComponentSpeci�cation.
3. Two elements of different types can have the same Identi�cation. However, this is only recommended, when the two VEC elements represent the

same domain entity from different points of view, otherwise this shall be avoided as far as possible.

4. In general, it is recommended to keep the Identi�cations stable over the time. This means, that if an object is exported multiple times the Identi�cation

of it should be the same. However, this is not possible in all cases, for all processes and all tools. Therefore, a process and / or tool creating VEC �les

should describe for all elements, under which conditions Identi�cations are stable or new ones are created.

vecsh:OrderedShape  

        rdf:type  sh:NodeShape;

        sh:property     [ sh:datatype  xs:nonNegativeInteger;

                          sh:maxCount  1;

                          sh:minCount  1;

                          sh:path      vec:orderedIndex

                        ];

        sh:targetClass  vec:Ordered .

vecsh:PathShape  

        rdf:type  sh:NodeShape;

        rdfs:subClassOf  vecsh:ExtendableElementShape;

        sh:property      [ sh:class     vec:Ordered , vec:TopologySegmentWrapper;

                           sh:minCount  0;

                           sh:path      vec:pathSegment

                         ];

        sh:targetClass   vec:Path .

vecsh:TopologySegmentWrapperShape

        rdf:type        sh:NodeShape;

        sh:property     [ sh:class     vec:TopologySegment;

                          sh:maxCount  1;

                          sh:minCount  1;

                          sh:path      vec:topologySegmentWrapperItem

                        ];

        sh:targetClass  vec:TopologySegmentWrapper .        

vecsh:CavitySpecificationShape

        rdf:type         sh:NodeShape;

        rdfs:subClassOf  vecsh:SpecificationShape;

        sh:property      [ sh:class     vec:Ordered , vec:NumericalValue;

                           sh:maxCount  2;

                           sh:minCount  0;

                           sh:path      vec:cavitySpecificationAngle

                         ];

        #... more properties here ...
        sh:targetClass   vec:CavitySpecification .

vecsh:EnumerationShape

        rdf:type        sh:NodeShape;

        sh:property     [ sh:datatype  xs:string;

                          sh:maxCount  1;

                          sh:minCount  1;

                          sh:path      vec:enumLiteral

                        ];

        sh:targetClass  vec:Enumeration .

vecsh:ValueDeterminationEnumShape

        rdf:type        sh:NodeShape;

        sh:in           ( vec:ValueDetermination_Calculated vec:ValueDetermination_Measured vec:ValueDetermination_Estimated );

        sh:targetClass  vec:ValueDetermination .

vecsh:SegmentCrossSectionAreaTypeEnumShape

        rdf:type        sh:NodeShape;

        sh:in           ( vec:SegmentCrossSectionAreaType_Reserved vec:SegmentCrossSectionAreaType_Real );

        sh:severity     sh:Info;

        sh:targetClass  vec:SegmentCrossSectionAreaType .        

http://localhost:8080/specifications/vec/v210/classes/occurrenceorusage/


1.2.2 AliasIdentification-Properties (VEC Model)

Certain elements have the capability to de�ne AliasIdenti�cations in addition to their unique identi�cations. AliasIdenti�cations are scoped identi�ers of the
object. The scope can be a system, a company or or process. One use case of this kind of ids is the creation of traceability links between different sources of

information. Examples for usages of the AliasIdenti�cations are:

The identi�er of a connector in the electrological process (with geometric variants)

The identi�er of a node or segment in a MCAD tool

An assigned UUID of an element.

1.2.3 id-Attributes (XML Representation)

All xs:complexType de�ne an id-Attribute with the type xs:ID. These are technical ids that are necessary for the referencing mechanism of the VEC within a

single XML �le. The semantics, constraints and requirements are de�ned by the XML Standard and XML Schema itself. These ids do not have any

signi�cance outside a VEC �le.

1.2.4 immutable-global-id-Attributes (XML Repesentation)

See the Section Global Unique Identi�ers (IRI).

1.2.5 IRIs (RDF Representation)

In RDF all objects (named resources in RDF) require a global unique identi�ers which is an IRI. This is mandatory for resource to be “referencable”. The

maturity of the IRI generation strategy decides quality & stability of links within RDF graphs. There it should be thoroughly thought through when

representing VEC data in RDF. The RDF IRI is very similiar to the immutable-global-id feature in VEC XML representations. When mapping VEC data from

XML to RDF and back, it should be possible to use immutable-global-id (when de�ned), as RDF IRI and vice versa.

However, RDF IRIs are a standard concept de�ned in RDF, whereas the immutable-global-id are a speci�c feature of the VEC XML representation.

1.3 Extension Mechanisms

If the well-de�ned data structures and �elds are not su�cient for the speci�c needs of a process or a tool, the VEC provides powerful extension

mechanisms. Namely the extension mechanisms are custom properties and open enumerations (see the corresponding chapters in the model description).

However, it should be considered that information transported via these mechanisms is not standardized and is always subject to an individual agreement
between interface partners. Therefore, these mechanisms shall be used with extreme caution.

It is strictly forbidden to use these mechanisms for the transfer of information that is already standardized within the VEC. In particular it is not permitted:

To store information in custom properties where already well-de�ned concepts exist in the VEC to store the same information, e.g. using a custom

property instead of an attribute or a more speci�c class in inheritance tree.

To use self-de�ned OpenEnumeration-literals when well-de�ned literals with the same semantics already exist.

VEC-Files that do not obey to these rules are noncompliant to this data format speci�cation.

If the extension mechanisms are used, it shall always be considered if these extensions might be a valid feature request for the VEC Standard.

1.4 Type Inheritance

The VEC uses an object-oriented class and inheritance concept. The following clari�cations apply to its use:

Only non-abstract classes can be instantiated.

In an inheritance hierarchy, the choice of the used type represents a semantic information itself. For example, the usage of a

PluggableTerminalSpeci�cation is a more speci�c information than the usage of a TerminalSpeci�cation. It is not required to use the more speci�c

class if the information is not available or it should not be transmitted. However, it is not permitted to use the more general class and transfer the

information of the more speci�c class in a custom property, or similar (e.g. use the TerminalSpeci�cation with a CustomProperty type=pluggable).

1.5 Default- and Missing-Value Handling

For various reasons, there may be attributes of entities where no value can be exported, or a special semantics is required. The cases are:

The information is not supported by the system / process. So, it is never available for this system / process.

The information is supported by the system; however, the value is not de�ned by the user.

The information is explicitly de�ned as “arbitrary” for the use case (e.g. the part version in a bill of material or a compatibility statement).

All cases might exist for mandatory attributes as well as for optional attributes. Due to the design, numerical values in the VEC and its high level of
optionality the following de�nition of special values should be only relevant for xs:string-Attributes:

Mandatory Attribute
Optional
Attribute

Unsupported <tag>/NULL</tag> omitted tag

Unde�ned <tag></tag> <tag></tag>

http://localhost:8080/specifications/vec/v210/classes/aliasidentification/
http://localhost:8080/specifications/vec/v210/classes/aliasidentification/
http://localhost:8080/specifications/vec/v210/classes/aliasidentification/
http://localhost:8080/specifications/vec/v210/xml-representation-of-the-model/global-unique-identifiers-iri/
http://localhost:8080/specifications/vec/v210/classes/pluggableterminalspecification/
http://localhost:8080/specifications/vec/v210/classes/terminalspecification/
http://localhost:8080/specifications/vec/v210/classes/terminalspecification/
http://localhost:8080/specifications/vec/v210/classes/customproperty/


Mandatory Attribute

Optional

Attribute

Arbitrary <tag>/ANY</tag> <tag>/ANY</tag>

/NULL & /ANY means, that the attributes with the name “tag” in the VEC receive these values.

<tag></tag> means, that an attribute with the name “tag” and an unde�ned value is represented in the VEC as an existing XML element with no value

(no contained text() node).
omitted tag: means the element tag for the attribute is not present in the VEC

1.6 Instantiation of Model Structures

There are various locations in the VEC model where structures / patterns are de�ned and used / instantiated somewhere else (e.g. a connector with its slots

and cavities). In most cases, the elements in the de�nition of a structure have corresponding elements in the instancing (e.g. ConnectorHousingSpeci�cation

→ ConnectorHousingRole, Slot → SlotReference & Cavity → CavityReference).

In cases where de�ned structures are instantiated, these structures shall be instantiated completely. That means, for every element in the structural

de�nition a corresponding element in the instancing shall exist, regardless if it is used in the respective VEC or not (e.g. for each Cavity of a

ConnectorHousingSpeci�cation, a CavityReference in the corresponding ConnectorHousingRole shall exist). This applies to the following list of structures,
which is here for reasons of clari�cation and which is not exhaustive:

Connectors

Wires

EEComponents

CompositeParts (e.g. Assemblies or Modules)

1.7 VEC-Package

1.7.1 Background

A Vehicle Electric Container (VEC) in XML representation is a single �le following the structure de�ned in the VEC XML schema. It contains all the

information of a harness, a set of harnesses, or other related information de�ned in the VEC speci�cation. A VEC Container can reference other �les via the
DocumentVersion element and information contained in other �les via the different “External References” concepts.

There are use cases where one wants to exchange the VEC together with these referenced �les. There is also the need to exchange a set of VEC �les

together (see Partitioning and Sizing of VEC Files). The VEC-Package addresses these use cases and speci�es the mechanism to exchange VEC �les and

any associated �les as a single package.

1.7.2 Detailed Solution

A VEC-Package is an archive containing two things:

One index �le: index.vec (a VEC �le)

At least one data �le (not required to be a VEC �le)

Depending on the individual requirements the technical format of the archive can be:

TAR

ZIP

or a zipped tar.

In addition, the archive can contain any number of addditional data �les. There is no restriction on the type or format of these �les. A VEC-Package may
contain multiple VEC �les and /or it may contain, for example drawings as SVG, CAD models of the harness or components as JT models.

The structure of the archive is not restricted. A VEC-Package may contain a �at set of �les, but may also have a folder structure. It is recommended to use a

folder structure to organize the �les in the archive: e.g. to apply a grouping of all drawings or project related groupings.

There is no naming convention for �les and folders inside the VEC-Package de�ned. It is up to the user to name a folder or a �le. However, it is recommended

to use the known and established �le name extensions for the �les in the package. I.e., .vec for a VEC �le, .svg for a SVG �le, or .jt for a JT �le.

A VEC-Package shall contain an index �le providing further information about the context of the package. The index �le has the reserved name index.vec

and it must be a valid VEC �le, conforming to the VEC XML schema.

The elements of the index VEC �le are restricted to the classes DocumentVersion and PartVersion. The index �le contains a DocumentVersion for each �le in

the package. The attributes of the DocumentVersion are used to provide further information on the �les:

dataFormat: the format of the �le in the VEC-Package (as MIME-Type if available).

documentNumber: the number of the document

documentVersion: the version of the document

The datatype xs:double has less �exibility of allowed values. If the equivalent of /NULL is required for xs:double valued attributes, NaN shall be
used. The other cases for xs:string-Attributes, mentioned above, are not supported by xs:double-Attributes.



http://localhost:8080/specifications/vec/v210/classes/connectorhousingspecification/
http://localhost:8080/specifications/vec/v210/classes/connectorhousingrole/
http://localhost:8080/specifications/vec/v210/classes/slot/
http://localhost:8080/specifications/vec/v210/classes/slotreference/
http://localhost:8080/specifications/vec/v210/classes/cavity/
http://localhost:8080/specifications/vec/v210/classes/cavityreference/
http://localhost:8080/specifications/vec/v210/classes/cavity/
http://localhost:8080/specifications/vec/v210/classes/connectorhousingspecification/
http://localhost:8080/specifications/vec/v210/classes/cavityreference/
http://localhost:8080/specifications/vec/v210/classes/connectorhousingrole/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/guidelines/general/external-references/
http://localhost:8080/specifications/vec/v210/xml-representation-of-the-model/partitioning-and-sizing-of-vec-files/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/partversion/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/documentversion/


�leName: the name of the �le as it appears in the package, including the folder structure. It must not point to any �le location which is not part of the

VEC-Package (e.g. a File on a central server �le share). The �leName is relative to the VEC-Package root. It MUST NOT contain a drive or device letter,

or a leading slash. All slashes MUST be forward slashes / (UNIX-style).

A DocumentVersion may reference one or more PartVersion objects via referencedPart to give further details on the usage of the �le. For example, the fact,

that an SVG �le which represents the wiring diagram of a harness, can be expressed in the index �le by a DocumentVersion pointing to a PartVersion, which

represents the harness.

FIGURE 4:  Index of a VEC-Package

The �gure above illustrates the structure of such a VEC-Package and the corresponding index.vec. The upper half of the diagram illustrates the �le structure

within the archive. In the root of the archive is the mandatory index.vec �le that describes the content of the package. The content of index.vec is

illustrated in the lower half of the diagram.

In the the example, the package consists of the following �les:

index.vec: Describes the content of the package.
Information about a harness with the part number 4811 speci�ed by:

drawings/4811_a.vec: A VEC �le, containing the de�nition of the harness.

drawings/4811_a.svg: A 2D SVG representation of the harness.

Information about a connector housing (part number: 4711) speci�ed by:

components/4711_a.vec: A VEC �le containing the part master data of the connector.

components/4711_a.svg: A component symbol (to be used in the 2D-drawing) de�ned in SVG.

In the VEC (especially in the index.vec) a DocumentVersion object is created for each external document (see lower half of the diagram). This

DocumentVersion object references the PartVersion to which it is related.

1.8 External References

For reasons of traceability (e.g. requirements) or because certain information is better represented in other standards than in the VEC format (e.g. 3D models

for components), it is necessary to be able to reference external documents from VEC elements. This guideline describes how these external documents can

be addressed and what concepts exist to connect those documents with VEC model elements (and when to use which).

http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/partversion/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/partversion/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/partversion/


1.8.1 Referencing an external Document

As described in the Implementation Guideline “General Structure” the DocumentVersion serves several purposes, one of which is the referencing of external
Documents. So, whenever a connection between a VEC element and an external document should be created, a DocumentVersion is required to address the

document. Such a DocumentVersion should contain no payload data (Speci�cation). However, it contains the same meta-data as it would, when included as

a full featured document (e.g. DocumentType).

There are different possibilities to resolve such a reference and retrieve the actual document:

1. PDM reference with Domain Key: Per de�nition, a document version is unambiguously identi�ed with its DocumentNumber, DocumentVersion and

CompanyName. With context knowledge about the process, the document can be resolved in the corresponding PDM / Document Management

System.

2. FileName: If the document is packaged together with VEC �le (VEC Package) the �lename attribute of DocumentVersion can point to a location within
the VEC Package. If the document is not part of the VEC Package, the FileName-Attribute shall be omitted.

3. Location: If the document can be resolved outside the VEC package, the Location-Attribute can point to a location (via an URN or URL) where the

document can be resolved. For �les that are stored following a speci�c procedure or systematics (e.g. in PDM System) the usage of URNs should be

the preferred way. This decouples the referencing from a concrete physical location, which might be different in different contexts or might be

changed over the time.

1.8.2 Connecting VEC Model Elements

After de�ning an external reference as DocumentVersion there are multiple approaches to create connections to VEC model elements. Some approaches

have a speci�c semantic, some are more generic. The different possibilities are summarized below. If there are more than one possibility for a speci�c

element, you have to choose the one with most speci�c semantics.

DocumentVersion.ReferencedPart → PartVersion: The document describes the part in some way (e.g. a component drawing). See “Parts, Documents

and Resources”.

DocumentVersion.RelatedDocument: The association is an informative link which DocumentVersion are related to each other (e.g. by derivation, A

Harness-Drawing is related to a 3D-Model). See “Parts, Documents and Resources”.

RequirementsConformanceStatement.DocumentVersion: Some PartVersions are satisfying (or not) the requirements de�ned in the external

document. See “Conformance to Requirements”.

ExternalMappingSpeci�cation.MappedDocument: The external document is a different view on the same content described by this speci�c VEC and a

mapping / active linking between the same elements in both views should be created. For example a harness and its drawing in SVG. See “External
Mapping”.

DocumentBasedInstruction.ReferencedDocument: An OccurrenceOrUsage has speci�c installation instructions that are de�ned in an external

document (e.g. a manual or a working speci�cation). See “Installation Instructions”.

ExtendableElement.ReferencedExternalDocuments: The referenced document contains additional information about the VEC element, that cannot be

represented in the VEC in an appropriate way. See “Parts, Documents and Resources”.

DocumentRelatedAssignmentGroup.RelatedDocumentVersion: A DocumentRelatedAssignmentGroup allows the creation of traceability links to

elements in a DocumentVersion for a set of VEC objects. The semantic of the traceability link is de�ned by the DocumentRelationType, for example
requirements that apply to these VEC elements. See “Assignment Group”.

1.8.2.1 External Mapping

FIGURE 5:  External Mapping

A index.vec �le consists practically only of such external references, as described in the recommendation Chapter “VEC-Packgage” and in the

corresponding Implementation Guideline.


http://localhost:8080/specifications/vec/guidelines/key-concepts/general-structure/#usages-of-the-documentversion
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/specification/
http://localhost:8080/specifications/vec/guidelines/general/vec-package/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/partversion/
http://localhost:8080/specifications/vec/v210/key-concepts/parts-documents-and-resources/
http://localhost:8080/specifications/vec/v210/key-concepts/parts-documents-and-resources/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/key-concepts/parts-documents-and-resources/
http://localhost:8080/specifications/vec/v210/classes/requirementsconformancestatement/
http://localhost:8080/specifications/vec/v210/classes/partversion/
http://localhost:8080/specifications/vec/v210/general-component-data/conformance-to-requirements/
http://localhost:8080/specifications/vec/v210/classes/externalmappingspecification/
http://localhost:8080/specifications/vec/v210/external-mapping/external-mapping/
http://localhost:8080/specifications/vec/v210/external-mapping/external-mapping/
http://localhost:8080/specifications/vec/v210/classes/documentbasedinstruction/
http://localhost:8080/specifications/vec/v210/classes/occurrenceorusage/
http://localhost:8080/specifications/vec/v210/instances-of-components/installation-instructions/
http://localhost:8080/specifications/vec/v210/classes/extendableelement/
http://localhost:8080/specifications/vec/v210/key-concepts/parts-documents-and-resources/
http://localhost:8080/specifications/vec/v210/classes/documentrelatedassignmentgroup/
http://localhost:8080/specifications/vec/v210/classes/documentrelatedassignmentgroup/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/documentrelationtype/
http://localhost:8080/specifications/vec/v210/key-concepts/assignment-group/
http://localhost:8080/specifications/vec/guidelines/general/vec-package/


The diagram above shows the usage of the external mapping mechanism. The elements highlighted in yellow represent the actual information described by

this VEC instance. The elements highlighted in blue are de�ning the mapping itself and the DocumentVersion highlighted in green represents the link to the

mapped document (in this case a SVG-symbol).

The ExternalMapping in this example de�nes that a representation of the referenced ConnectorHousingSpeci�cation can be found in the SVG-symbol under

the key ID_27101123. This is especially useful, if one wants address speci�c subelements (e.g. for highlighting). In the example, the Cavitys of the connector

could also be mapped to speci�c symbols within the SVG.

The actual content data of the VEC-�le (highlighted in yellow) and the mapping information is separated into two different DocumentVersion elements. This

means even though both information are contained in the same VEC-�le, from the perspective of a versioning mechanism they are clearly separated.

1.8.2.2 External Installation Instructions

FIGURE 6:  External Installation Instructions

The usage of �le-based installation instructions is quite similar to the described approach for external documents. The FileBasedInstruction de�nes a pointer

to the �le packaged together with the VEC-�le in the container and is referenced by the PartOccurrence.

The same effect could be achieved if a DocumentBasedInstruction is used, pointing to an external document (de�ned as described in the section before).

2 Key Concepts

2.1 General Structure of VEC Files & Documents

The VEC has two major key concepts: PartVersion and DocumentVersion. Both are ItemVersions and both are used to reference / identify a piece of relevant

information in a PDM context unambigiously.

Whereas the PartVersion “just” represents a PDM anchor / reference for a part or component plus some Meta-Information, the DocumentVersion has

different characters in the VEC (for more details see section Usages of the DocumentVersion):

1. It can serve as a plain PDM anchor / reference to a document, with no further content / information in the VEC, like the PartVersion for parts (VEC

equivalent to the KBL External_reference).

2. However, more important is that the DocumentVersion is the container for any payload information contained in the VEC.

From a meta data perspective, the VEC does not differentiate between documents that are contained in the VEC itself or in some external place somewhere

else. This guideline is intended to provide guidance on how these concepts should be used and how an appropriate distribution of documents can look alike.

2.1.1 Fundamentals

On the root level, a VEC contains mainly PartVersions and DocumentVersions and some other unversioned (and constant) information, e.g. the de�nition of

the Units used within the VEC. This is illustrated in �gure Basic Structure.

Important: The difference between the two approaches is that for the DocumentBasedInstruction a DocumentVersion is required. This means that

the external �le must be an o�cial document with a document number, an appropriate versioning and so on. The FileBasedInstruction can point to

any �le needed (within a VEC package).

It is forbidden to use the FileBasedInstruction approach, if the external �le is a valid document.

⚠

http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/externalmapping/
http://localhost:8080/specifications/vec/v210/classes/connectorhousingspecification/
http://localhost:8080/specifications/vec/v210/classes/cavity/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/filebasedinstruction/
http://localhost:8080/specifications/vec/v210/classes/documentbasedinstruction/
http://localhost:8080/specifications/vec/v210/classes/partversion/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/itemversion/
http://localhost:8080/specifications/vec/v210/classes/partversion/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/partversion/
http://localhost:8080/specifications/kbl/v25-sr1/classes/external_reference/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/partversion/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/unit/
http://localhost:8080/specifications/vec/v210/classes/documentbasedinstruction/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/filebasedinstruction/


VecContent

DocumentVersion Specification

DocumentVersion

DocumentVersion

PartVersion

PartVersion

Specification

PartOrUsageRelatedSpecification

PartOrUsageRelatedSpecification

...

FIGURE 7:  Basic Structure

One of the core concepts of the VEC is, that there is no restriction for the type of information that can be contained in a DocumentVersion nor the valid

combinations of different types of information that can be contained together. This enables the DocumentVersion to re�ect the actual circumstances of the

domain or process and thus represents an actual technical document with a corresponding release and versioning.

Reasonable combinations of information are driven by the use cases (with process speci�c variations). The description of some common use case is part of

this guideline.

A document can contain any number of Speci�cations. The Speci�cations represent the information modules of the VEC and each de�nes a certain type or
aspect of information. The Speci�cations in a document can be thought of like drawers, where each drawer contains a speci�c aspect of the vehicle network.

A distinction can be made here between:

General speci�cations, that are for example required for the provision of basic information or for information reuse (e.g. an InsulationSpeci�cation),

and

PartOrUsageRelatedSpeci�cations that are speci�cally used to describe / specify the properties of one or many PartVersions.

2.1.1.1 Parts and Documents

One of the most fundamental concepts of the VEC is the separation of a part / component from its de�nition (speci�cation). In this, the

PartOrUsageRelatedSpeci�cation plays a major role.

In the VEC a part (PartVersion) does not contain any information about the part, except its PDM Information (PartNumber, PartVersion, …). All the information
about the technical properties of a part is expressed by a subclass of PartOrUsageRelatedSpeci�cations (e.g. a WireSpeci�cation). The

PartOrUsageRelatedSpeci�cation is contained in a DocumentVersion. As mentioned above, the distribution of these speci�cations into different documents

is driven by the process / domain (see object diagram Parts and Documents).

FIGURE 8:  Parts and Documents

This approach enables the VEC to address for example the following scenarios properly:

The distribution of information into different documents is mainly driven by the requirements of the process. Nevertheless, certain best practices

and minimal content can be de�ned for certain types of documents.


http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/specification/
http://localhost:8080/specifications/vec/v210/classes/specification/
http://localhost:8080/specifications/vec/v210/classes/specification/
http://localhost:8080/specifications/vec/v210/classes/insulationspecification/
http://localhost:8080/specifications/vec/v210/classes/partorusagerelatedspecification/
http://localhost:8080/specifications/vec/v210/classes/partversion/
http://localhost:8080/specifications/vec/v210/classes/partorusagerelatedspecification/
http://localhost:8080/specifications/vec/v210/classes/partversion/
http://localhost:8080/specifications/vec/v210/classes/partorusagerelatedspecification/
http://localhost:8080/specifications/vec/v210/classes/wirespecification/
http://localhost:8080/specifications/vec/v210/classes/partorusagerelatedspecification/
http://localhost:8080/specifications/vec/v210/classes/documentversion/


VEC A

DocumentVersion
X

VEC B

DocumentVersion
Y

VEC C

DocumentVersion
Z

VEC NEW

DocumentVersion
X

DocumentVersion
Y

DocumentVersion
Z

DocumentVersion
NEW

FIGURE 9:  DocumentVersions in the Information Flow

The description of a part is changed, but the part itself is not changed (rereleased). This can happen for example if the actual technical properties of

the part stay the same, but the description is extended or corrected. In this case, a new version of the document is created. However, the PartVersion

stays the same.

A document and the contained speci�cations are describing more than one part (e.g. a drawing for a certain class/family of terminals, seals & plugs).
In this case it can happen that the document and the speci�cations are changed, but not all of the described parts have to be changed (rereleased). E

2.1.1.2 Usages of the DocumentVersion

As mentioned in the introduction, the DocumentVersions VEC can be used in different ways:

Plain PDM reference (a.k.a as external reference): In this case, the DocumentVersion in the VEC only contains meta-data and no payload-data (no

Speci�cations). This is described in detail here.

Digital Representation of an external Document: There are use cases where existing documents can represented in the means of the VEC. In other

words the VEC DocumentVersion is a digital representation of the original document. For example, the information of a component data sheet (as

PDF) might be also represented in VEC in a digitally evaluable way (PartOrUsageRelatedSpeci�cation). In this case the same mechanisms like for the
plain PDM reference can be used, plus payload-data in DocumentVersion.

Native VEC Documents: The VEC DocumentVersion itself is the source of information. This case is quite similar to the digital representation scenario.

However, external links (if de�ned) will resolve to the VEC �le itself.

However, regardless of the use of the DocumentVersion, it always represents the meta-data of the entity in the process, which does not change depending on

its VEC representation. Meaning, if for example a system schematic is referenced as external document in one place (VEC �le) and is used as a native

document / digital representation in another place, it is still a system schematic (DocumentType) with the same DocumentNumber & Version.

2.1.1.3 Combination and Reuse of Documents

Typically, information is �owing through the process. It is created somewhere, passed on to
someone else and is used there to create other information blocks. To make these

information �ows traceable each piece of information must be identi�able and must have a

change indicator. In the VEC this is done by the DocumentVersion. In order to preserve this

traceability along the process, the assignment of information pieces to its original

DocumentVersion shall remain unchanged.

An illustrative example for this, is the distribution and use of component master data
(compare �gure on the right). As described in “Partitioning and Sizing of VEC Files”

component master data is best provided with one VEC per component, containing at least

one DocumentVersion with the component’s speci�cations (VEC A, B, C).

If a wiring harness is created with these components, the component master data (at least

a portion of it) is required in the data set of the harness (VEC NEW). However, the

information is not integrated into the DocumentVersion of the harness (DocumentVersion
NEW), as this would lead to a loss of traceability, even if the structures of the VEC would

allow such an approach. Instead, copies of the DocumentVersions containing the

component’s part master data are placed beside the DocumentVersion of the harness,

within the same VEC.

2.1.2 Types of Documents

The DocumentType is an OpenEnumeration that de�nes some document types that are common in the harness development process. The following

sections describe typical content that can be expected in the DocumentVersions of a speci�c type, if the content is represented in the VEC.

However, as the DocumentVersion is primary an entity from the domain of the creating process, the content and the given Speci�cations may vary.

2.1.2.1 Part Master

A part master document describes the properties of a component or a group of components (a PartVersion or a set of PartVersion). It contains some
general purpose speci�cations that provide information for any component type. A detailed description can be found in the “Component Description”

Guideline.

2.1.2.2 Master Data De�nition

In contrast to PartMaster documents MasterDataDe�ntions are not related to a speci�c component or a set of components (equivalent to part, part number,

etc.). MasterDataDe�ntions are prede�ned standard information pieces in the process declared by some central organizational unit.

It is a common approach to manage certain information centrally and distribute it in the development processes. The de�nition of this information is usually

independent of speci�c development projects and ensures the adherence to certain conventions and guidelines across (all) development projects. The

component master data is a very speci�c aspect of this information as it always refers to a component (with a part number). In addition, there is a wide

A DocumentVersion in the VEC and the physical VEC �le shall not be equated. A DocumentVersion is a logical entity and can be contained in

multiple VEC (�les). Conversely, a VEC �le can contain multiple DocumentVersions.

Even though the logical content (the represented object graph) of a self contained DocumentVersion might be copied from one VEC �le to another

without problem, the actual XML snippet might require adaption. At least the XML ID-attributes must be checked for uniqueness and, in case of a
con�ict, changed. Referencing IDREF(S) also have to be changed accordingly.



http://localhost:8080/specifications/vec/v210/classes/partversion/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/specification/
http://localhost:8080/specifications/vec/guidelines/general/external-references/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/partorusagerelatedspecification/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/xml-representation-of-the-model/partitioning-and-sizing-of-vec-files/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/documenttype/
http://localhost:8080/specifications/vec/v210/classes/openenumeration/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/specification/
http://localhost:8080/specifications/vec/v210/classes/partversion/
http://localhost:8080/specifications/vec/v210/classes/partversion/
http://localhost:8080/specifications/vec/guidelines/product-definition/component-description/


VecContent

DocumentVersion
(System Schematic)

ConnectionSpecification

DocumentVersion
(Master Data)

SignalSpecification

SignalSpecifcation

FIGURE 10:  Master Data Extension

range of other information that is not directly related to a speci�c component but is nevertheless managed centrally.

Such DocumentVersions with central de�nition, that are not related to speci�c PartVersion are summarized under the DocumentType MasterDataDe�nition.

Examples for such centrally distributed informations are:

Usage Node Lists (UsageNodeSpeci�cation),

Signal Catalogs (SignalSpeci�cation), or

Standardized Base Speci�cations (e.g. CavitySpeci�cation, InsulationSpeci�cation)

Extension of Master Data De�nitions

A VEC that requires master data de�nitions of a speci�c type (e.g. signals, usage nodes)

can obtain these from different sources (e.g. seperate signal catalogues for power &

information). A special use case of this is the addition / extension of a master data

de�nition with individual information in a speci�c development artifact.

Example: New signals might be required in the system schematic of a new series that are

not (yet) included in the master data de�nition. These additions could be contained in a

local signal catalog of system schematic, while the central master data catalog is used for

the other signals. When the development process has progressed, these local de�nitions

might be included in the master data de�nition.

The following bulletins illustrate some examples of different, process speci�c consistency relationships. The examples are from the context of the above

mentioned “signal catalogues”.

Different Sources for separate domains (e.g. power signals vs. information signals): In this case, there should be no overlaps between the de�ned

entities.

Local / project speci�c de�nitions vs. global de�nitions: In this case it depends on the degree of freedom allow for project speci�c de�nition. Or,

viewed from the other direction, on the binding nature of the global de�nitions. This determines whether only new information may be added or

whether existing elements may be overwritten with other information.

In any case, the order of precedence has to be de�ned for the different sources. However, this is mainly an issue for the business logic of an authoring use

case (which elements can be de�ned or selected by the user in a certain context). In the data exchange use of the VEC, the elements from the different

sources are explicitly referenced. So at any time it is unambiguously de�ned which elements have been used / selected, even though the rules why an

element took precedence over another are not contained in the VEC (compare �gure Master Data Extension)

2.2 Change Tracking of Document Versions

As described in detail in the Implementation Guideline “General Structure / Usages of the DocumentVersion” one use case of the DocumentVersion is to
serve as a payload data container within the VEC, either for the digital representation of an external document or for native digital data. This Implementation

Guide is about the possibilities to track changes and modi�cations of this payload data within the VEC. Be sure to read Parts, Documents and Resources

before, as it also contains important information about this topic.

In the VEC, data is organized in DocumentVersions and those are unambiguously identi�ed by CompanyName, DocumentNumber and Version. Those

attributes are identifying an entity relevant for the process as the single source of truth for this information, for example a drawing, a data sheet or even an

entity in a database. The handling of those attributes and the corresponding change procedures are driven by the process and not by technical requirements.
In many cases the VEC only contains a digitally readable representation (an export) of that information.

Consequently, the identifying attributes and in particular the Version are only changed, when the relevant process entity has changed, according to rules

applied by the process (e.g. a new version of a drawing has been created and approved). However, there are numerous scenarios (described in detail below)

where the payload content in a VEC DocumentVersion can change, without a change of the underlying process entity. To allow the content of a

DocumentVersion to be marked as changed in such scenarios, the DigitalRepresentationIndex was introduced. If the DigitalRepresentationIndex has

changed, the content of the DocumentVersion must be checked for changes, otherwise the content can be assumed unchanged (see Parts, Documents and
Resources for a de�nition of “unchanged”).

2.2.1 Application of the DigitalRepresentationIndex

2.2.1.1 When to Use

The DigitalRepresentationIndex is an optional feature of the VEC that softens the requirements for the change semantic of CompanyName,

DocumentNumber and Version in cases where the content of a DocumentVersion in the VEC changes, without being able to at least adjust / increment the

Version-attribute.

2.2.1.2 When to Modify

A reading system can assume the payload content of a DocumentVersion unchanged, when the DigitalRepresentationIndex has not changed between two
VEC �les. The DigitalRepresentationIndex shall be different, whenever the payload content of a DocumentVersion with the same CompanyName,

DocumentNumber and Version is different. If a clear statement is not possible, a change is to be assumed in case of doubt. As mentioned before, there are

The VEC speci�cation makes no assumptions about consistency relationships

between such multiple sources for the same type of information. This is due to the

fact that such restrictions are usually the result of process speci�c de�nitions (see the following examples).



http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/partversion/
http://localhost:8080/specifications/vec/v210/classes/documenttype/
http://localhost:8080/specifications/vec/v210/classes/usagenodespecification/
http://localhost:8080/specifications/vec/v210/classes/signalspecification/
http://localhost:8080/specifications/vec/v210/classes/cavityspecification/
http://localhost:8080/specifications/vec/v210/classes/insulationspecification/
http://localhost:8080/specifications/vec/guidelines/key-concepts/general-structure/#usages-of-the-documentversion
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/key-concepts/parts-documents-and-resources/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/key-concepts/parts-documents-and-resources/
http://localhost:8080/specifications/vec/v210/key-concepts/parts-documents-and-resources/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/documentversion/


multiple scenarios where such a situation might occur. The illustration below is intended to explain some examples of such scenarios.

Export (2)

Export to extern (3)

IT-System

Digital Representation

Technical Drawing / Document
Component Data VEC

DocumentVersion 1

DocumentVersion 2

DocumentVersion 3

External Component Data VEC

DocumentVersion 1

DocumentVersion 2

(1)

Harness VEC

Embed (4)

Component Data VEC

...

Other VEC Data

...

FIGURE 11:  Different Representations of the same Information

In all scenarios, the content of the DocumentVersion in a VEC �les might be different, resulting in a modi�ed digital representation index, for the same

(unchanged) source document. For the example, assume the document entity in the process is an approved component drawing as PDF (highlighted in blue

on the left hand side of the �gure). This is the document identi�ed by CompanyName, DocumentNumber and Version. The following situations might occur

that result in different digital representations without changed source document:

In a �rst step (marked with (1)), the information from the drawing is transferred manually into an IT-System (e.g. a component database). A �rst digital
representation is created. However, this representation might be changed at a later point for multiple reasons:

A mistake / typo occurred during the manual data transfer and is corrected.

Data management guidelines or the underlying IT-System changed and more information from the original document has to be transferred.

This data is exported into a Component Data VEC (marked with (2)). If this is done multiple times, different digital representation might be created due

to:

Added features of the exporter resulting in more information in the export.

A bug �x for the exporter component or the exporting system.
An update of the underlying VEC version.

The component data is used to create other artifacts in the development process (marked with (4)). For this, at least parts of the original information

might be embedded in the new artifact for traceability reasons. Another digital representation is created.

A system might provide different export �avours with different content levels depending on the recipient. For example a VEC for external partners

might contain less information as a VEC for internal use.

The source document might contain various information. E.g. a single component drawing can de�ne a complete family of components (e.g. a family

of terminals). When creating a VEC �le per component (recommended approach for a component database), the resulting VEC �le should only contain
the information relevant to exported component and not all components de�ned in the drawing. Therefore, you might have different

DocumentVersions containing different information slices of the same source document (illustrated in the �gure below).

Technical Drawing / Document

Whole content as VEC

VEC 1

VEC 2Overlap

FIGURE 12:  VEC �les with partial content

2.2.1.3 How to Create

The VEC does not de�ne any speci�cations for the construction of the DigitalRepresentationIndex (e.g. syntax, order). The only requirement is, that two

values can be checked of equality. If the values are equal, the payload data can be assumed unchanged, if the values are different, the payload data might be

different as well.

An indication of change with DigitalRepresentationIndex is mandatory only if the payload data content of a DocumentVersion has changed (e.g.

changed, added or removed attributes or contained objects). It does not require that the resulting XML serialization is binary identical.

Changes related to the technical aspects of XML representation do not require a DigitalRepresentationIndex. This includes, but is not limited to

changes of XML ID & IDREF elements (assuming the referenced objects are the same), ordering of XML elements and XML Meta elements like

XML Comments ("<!-- ... -->") or XML Processing Instruction (<?target instructions?>)



http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/documentversion/


It is up to the discretion and capabilities of the generating system to de�ne a suitable and possible algorithm to generate the index. However, it should

always be taken into account that an unnecessary change indication creates needless overhead on the side of the reading systems.

Possible approaches include:

An internal change tracking index of the creating system (e.g. revision number)

A checksum created over the relevant payload data

A timestamp, either of the last change in the creating system or the time of the VEC creation.

A UUID identifying a speci�c digital representation. Each time a new digital representation is created a new UUID is generated.

2.3 Expected Behaviour of VEC Interfaces

A wide range of different systems, supporting different use cases, are used in the process of wiring harness development. All of them might have a VEC-
Interface for input & output, so sooner or later the question arises “What are the expectations for the behavior of those interfaces?”. This section will discuss

this question.

2.3.1 Background

In a document based data exchange scenario (e.g. working with a word processor) the intuitive expectation is, that a document / �le is “opened”, changes

are performed and the document is “saved” again, with the document now containing the original content plus the modi�cations.

However, this simple and intuitive approach is not feasible in a model based data exchange scenario like the one for the VEC. The VEC is not intended to be a

�le-based database that contains all information about a vehicle network, which grows continuously over the time (like a Word document or an ODT �le of a

book). The basic idea of the VEC is, to provide a consistent language (model) for data exchange in the process of wiring harness development and to allow

the exchange of use case speci�c slices of information within the process between systems and organizations.

This fundamental concept means that there is no such thing as “the one VEC interface”. The important question is, which use cases (or slices) of the VEC

data model are supported or required for a speci�c interface.

Let’s assume that in our system landscape one component is responsible for the synthesis of electrology and geometry, and the derivation of a wiring

harness from it. Such a system would potentially have 4 interfaces requiring different sections of the VEC model:

Topology (IN)

System or Wiring Schematic (IN)

Part Master / Component Data (IN)

Harness De�nition (OUT)

In addition, the scope and validity of the different information slices may vary. For example, component data could be updated daily, with only the changed

components at a time, but with a global validity, while a wiring harness de�nition is only valid for a speci�c vehicle context.

Even when considering only this example, it is already obvious that it does not make any sense to formulate requirements on cross-relationships between

imported and generated VEC data, like “a system has to be able write all VEC data it has imported in an unchanged matter”.

2.3.1.1 Content of a VEC

A VEC can contain any scope, amount and combination of information that is valid, with respect to the VEC Model and the Implementation Guidelines. There

shall be no requirement to create VECs with restricted content speci�cally for importing / receiving systems.

A receiving system shall be able to accept any valid VEC. If the VEC contains more than the required information of the system, the system is free to ignore

the pieces of information irrelevant for its purpose. It does not have to store the ignored pieces for a later reexport. However, it shall not refuse the import of
a VEC because of “too much” information.

On the other hand, it is up to the system to verify that a VEC contains enough information for the use case of the system. If that is not the case, the system

can reject the import because of “too little” information.

2.3.1.2 Traceability Scenarios

Even though it is not possible to de�ne general relationship requirements between imported and exported data, there are use cases in which a traceability

between imported and exported data is required. In such cases, slices of imported data might be embedded into the exported data. This scenario is

described in section “Combination and Reuse of Documents”

2.3.2 Summary of the Requirements

The aforementioned results in the following general requirements for systems with VEC interface:

A system is not required to interpret, implement or store the full extent of the VEC model, when only portion of it is required for its speci�c use case.

A system must be able to extract the information relevant for its use case from VEC �les that contain more information than the system itself requires
or is able to process.

A system is only required to export the information relevant to its use case. In other word, in a roundtrip scenario with a “more powerful” system it may

return less than it has received.

On the other side, a system that is able to export a very extensive VEC is not required to strip the information down for a “less powerful” system.

A system can reject VEC �les that do not contain enough or only irrelevant information for its use case.

2.4 Usage Nodes

http://localhost:8080/specifications/vec/guidelines/key-concepts/general-structure/#combination-and-reuse-of-documents


A20 * 1
Main Beam

A20 * 2
Low Beam

Head Light Left (A20)

A20 * 3
Direction Ind.

FIGURE 13:  Illustration of Usage Nodes

The example illustrates the use of UsageNodes. A UsageNode represents a position in an abstract vehicle. For example the Head Light Left. UsageNodes
belong to the master data and they are de�ned on some company wide level. They can be used to enforce consistent naming over different projects and

different development streams (e.g. between geometry and electrologic).

FIGURE 14:  Usage Nodes

A UsageNode can be subdivided into more detailed UsageNodes. For example the Head Light can be split up into Main Beam, Low Beam and Direction

Indicator.

The diagram above shows this usage of sub usage nodes. There is one main usage node “A20” with it’s sub nodes “A20*1”, “A20*2” and “A20*3”. For

simpli�cation of the following code snippet only the XML representation of the de�nition of the parent usage node “A20” and its child node “A20*1” is shown.

2.5 Physical Properties

2.5.1 Numerical Values

Many technical properties are de�ned as NumericalValue. Those consist of a numerical value in a de�ned Unit and an optional Tolerance.

<Specification xsi:type="vec:UsageNodeSpecification" id="id_usage_node_spec_1">

  <Identification>UsageNodeList</Identification>

  <UsageNodes id="id_usage_node_1">

    <Identification>A20</Identification>

    <Description xsi:type="vec:LocalizedString" id="id_1">

      <LanguageCode>En</LanguageCode>

      <Value>Head Ligth left</Value>

    </Description>

    <SubUsageNodes>id_usage_node_2</SubUsageNodes>

  </UsageNodes>

  <UsageNodes id="id_usage_node_2">

    <Identification>A20*1</Identification>

    <Description xsi:type="vec:LocalizedString" id="id_2">

      <LanguageCode>En</LanguageCode>

      <Value>Main Beam</Value>

    </Description>

  </UsageNodes>

[...]

</Specification>

http://localhost:8080/specifications/vec/v210/classes/usagenode/
http://localhost:8080/specifications/vec/v210/classes/usagenode/
http://localhost:8080/specifications/vec/v210/classes/numericalvalue/
http://localhost:8080/specifications/vec/v210/classes/unit/
http://localhost:8080/specifications/vec/v210/classes/tolerance/


FIGURE 15:  Numerical Values

The object diagram above illustrates the VEC representation of the following value:

2.5.1.1 Units

Units that are used within a VEC are de�ned globally within the VEC �le (under the VecContent) and reused / referenced by each NumericalValue. The VEC

allows a wide variety of different Units from different systems of units. The following XML snippet contains some concrete examples for Units. The �rst three

units (id_unit_1, id_unit_2 & id_unit_3) in the snippet are the XML representation of the example above.

2.5.2 Reference Systems

FIGURE 16:  Reference Systems

105.23 Ω/km ± 20.0

<vec:VecContent ...>

    [...]

    <Unit xsi:type="vec:SIUnit" id="id_unit_1">

        <SiUnitName>Ohm</SiUnitName>

    </Unit>

    <Unit xsi:type="vec:SIUnit" id="id_unit_2">

        <Exponent>-1</Exponent>

        <SiUnitName>Metre</SiUnitName>

        <SiPrefix>Kilo</SiPrefix>

    </Unit>

    <Unit xsi:type="vec:CompositeUnit" id="id_unit_3">

        <Factors>id_unit_1 id_unit_2</Factors>

    </Unit>

    <Unit xsi:type="vec:SIUnit" id="id_unit_6000">

        <Exponent>2</Exponent>

        <SiUnitName>Metre</SiUnitName>

        <SiPrefix>Milli</SiPrefix>

    </Unit>

    <Unit xsi:type="vec:SIUnit" id="id_unit_170">

        <SiUnitName>Gram</SiUnitName>

    </Unit>

    <Unit xsi:type="vec:SIUnit" id="id_unit_442">

        <SiUnitName>DegreeCelsius</SiUnitName>

    </Unit>

    <Unit xsi:type="vec:SIUnit" id="id_unit_189">

        <SiUnitName>Ampere</SiUnitName>

    </Unit>

    <Unit xsi:type="vec:SIUnit" id="id_unit_445">

        <SiUnitName>Volt</SiUnitName>

    </Unit>

    <Unit xsi:type="vec:SIUnit" id="id_unit_196">

        <SiUnitName>Second</SiUnitName>

    </Unit>

     [...]

</vec:VecContent>

http://localhost:8080/specifications/vec/v210/classes/unit/
http://localhost:8080/specifications/vec/v210/classes/veccontent/
http://localhost:8080/specifications/vec/v210/classes/numericalvalue/
http://localhost:8080/specifications/vec/v210/classes/unit/
http://localhost:8080/specifications/vec/v210/classes/unit/


This tutorial demonstrates how values with reference systems shall be used. In many cases (e.g. Colors) there is no single correct way to express a certain

literal, but many different ways.

In order to correctly express such values, the VEC gives the possibility to de�ne not only the value, but also the reference system in which the value is
de�ned. This means if there have three valid ways to express the Color “Red”, the VEC allows to de�ne and differentiate all of them. If the value is de�ned in

some standard reference system this ca be used (e.g. RGB or RAL for colors). If the value is de�ned in some company speci�c reference system, this can be

de�ned, too (see ACME Inc.). For attributes like the “baseColor” of a wire insulation it is possible to de�ne the single value in the representation different

reference systems (in the example the color RED in RGB, RAL and a company speci�c “ACME Inc.” system). However all given representations shall refer to

the same “real” value.

The example shown in the �gure Reference Systems has the following XML representation:

2.6 Custom Properties

This implementation guideline gives more details and examples on the usage and the correct interpretation of the VEC concept: Extensibility with Custom

Properties.

CustomProperty is available in all subclasses of ExtendableElement. In the following examples the class Person is used, which intentionally is not a subclass

of ExtendableElement, but for a clear and easy to understand example of custom properties it is well suited.

The left side shows the Person class as de�ned in the VEC. The right hand side shows an excerpt from the domain of an arbitrary Tool. As you can see in the

UML model, the class on the right side contains the attributes employeeNumber and different usages of the class Address, which are both not represented in

the VEC. Despite the lack of explicit modelling concepts with this speci�c semantic, the extension mechanisms of the VEC still allow the exchange of this

information within the VEC. The VEC supports extensions of the following type:

Additional properties (attributes), either single or multi-valued (All subclasses of CustomProperty, e.g. SimpleValueProperty or BooleanValueProperty).

Contained structures, either single or multi-valued (the ComplexProperty, e.g. simple objects like the address).

These concepts do not support the extension of elements with additional relationships (IDREF in XML).

2.6.1 XML Examples / Snippets

The following XML snippets illustrate the correct usage of the concepts to support the business model shown in the UML diagram above.

2.6.1.1 Simple Property

The snippet shows the extension of a Person object by the property EmployeeNumber (String). The VEC supports a wide range of primitive property types (e.g.

Boolean, Date, Numerical, see the subclasses of CustomProperty for a complete list), so keep in mind to choose the correct type for the corresponding value.

<vec:VecContent ...>

    [...]

    <DocumentVersion id="id_1">

        [...]

        <Specification xsi:type="vec:InsulationSpecification" id="id_2">

            <Identification>...</Identification>

            <BaseColor id="id_3">

                <Key>#CC0605</Key>

                <ReferenceSystem>RGB</ReferenceSystem>

            </BaseColor>

            <BaseColor id="id_4">

                <Key>3020</Key>

                <ReferenceSystem>RAL</ReferenceSystem>

            </BaseColor>

            <BaseColor id="id_5">

                <Key>RD</Key>

                <ReferenceSystem>ACME Inc.</ReferenceSystem>

            </BaseColor>

        </Specification>

    </DocumentVersion>

    [...]

</vec:VecContent>

http://localhost:8080/specifications/vec/v210/basic-datatypes/extensibility-with-custom-properties/
http://localhost:8080/specifications/vec/v210/basic-datatypes/extensibility-with-custom-properties/
http://localhost:8080/specifications/vec/v210/classes/customproperty/
http://localhost:8080/specifications/vec/v210/classes/extendableelement/
http://localhost:8080/specifications/vec/v210/classes/person/
http://localhost:8080/specifications/vec/v210/classes/extendableelement/
http://localhost:8080/specifications/vec/v210/classes/person/
http://localhost:8080/specifications/vec/v210/classes/customproperty/
http://localhost:8080/specifications/vec/v210/classes/simplevalueproperty/
http://localhost:8080/specifications/vec/v210/classes/booleanvalueproperty/
http://localhost:8080/specifications/vec/v210/classes/complexproperty/
http://localhost:8080/specifications/vec/v210/classes/customproperty/


2.6.1.2 Complex Property

If a VEC object is to be extended by an attribute of a structured data type, the approach is analogous to the simple property. Only a ComplexProperty is used

instead. The PropertyType de�nes the role of the structured data in the context of the parent object (in other words the “attribute name”, e.g. HomeAddress).

The individual attributes of the structured data type in turn are then mapped as simple properties within the ComplexProperty. For deeper structured data it is

perfectly valid to de�ne ComplexPropertys that contain ComplexPropertys again.

If the same data structure (not the same data) should appear in different roles (e.g. HomeAddress, WorkAddress) another ComplexProperty with a different

PropertyType is de�ned. A concept for sharing / reusing the data de�ned in such structures is not part of the VEC extension concepts.

2.6.1.3 Multi-Valued Custom Properties

If an object shall be extended by a multi-valued property (e.g. AdditionalAddresses) multiple custom properties (either simple or complex) with the same

PropertyType are de�ned.

2.7 Tailoring Mechanisms

<vec:VecContent ...>

    [...]

    <Person id = "id_01">

      <CustomProperty id="id_01_1" xsi:type="vec:SimpleValueProperty">

          <PropertyType>EmployeeNumber</PropertyType>

          <Value>ABC123</Value>

      </CustomProperty>

      <Department>IT</department>

      <FirstName>John</firstName>

      <LastName>Doe</lastName>

    </Person>

    [...]

</vec:VecContent>

<vec:VecContent ...>

    [...]

    <Person id = "id_01">

        <CustomProperty id="id_01_1" xsi:type="vec:ComplexProperty">

            <PropertyType>HomeAddress</PropertyType>

            <CustomProperty id ="id_01_1_1" xsi:type="vec:SimpleValueProperty">

                <PropertyType>Street</PropertyType>

                <Value>Central Street 1</Value>

            </CustomProperty>

            <CustomProperty id ="id_01_1_2" xsi:type="vec:SimpleValueProperty">

                <PropertyType>City</PropertyType>

                <Value>Anytown</Value>

            </CustomProperty>

            <CustomProperty id ="id_01_1_3" xsi:type="vec:IntegerValueProperty">

                <PropertyType>PostalCode</PropertyType>

                <Value>04325</Value>

            </CustomProperty>

        </CustomProperty>

        <CustomProperty id="id_01_2" xsi:type="vec:ComplexProperty">

            <PropertyType>WorkAddress</PropertyType>

            [...]

        </CustomProperty>

        [...]

    </Person>

    [...]

</vec:VecContent>

<vec:VecContent ...>

    [...]

    <Person id = "id_01">

        <CustomProperty id="id_01_1" xsi:type="vec:ComplexProperty">

            <PropertyType>AdditionalAddresses</PropertyType>

            <CustomProperty id ="id_01_1_1" xsi:type="vec:SimpleValueProperty">

                <PropertyType>Street</PropertyType>

                <Value>Central Street 1</Value>

            </CustomProperty>

            <CustomProperty id ="id_01_1_2" xsi:type="vec:SimpleValueProperty">

                <PropertyType>City</PropertyType>

                <Value>Anytown</Value>

            </CustomProperty>

            <CustomProperty id ="id_01_1_3" xsi:type="vec:IntegerValueProperty">

                <PropertyType>PostalCode</PropertyType>

                <Value>04325</Value>

            </CustomProperty>

        </CustomProperty>

        <CustomProperty id="id_01_4" xsi:type="vec:ComplexProperty">

            <PropertyType>AdditionalAddresses</PropertyType>

            [...]

        </CustomProperty>

        [...]

    </Person>

    [...]

</vec:VecContent>

http://localhost:8080/specifications/vec/v210/classes/complexproperty/
http://localhost:8080/specifications/vec/v210/classes/complexproperty/
http://localhost:8080/specifications/vec/v210/classes/complexproperty/
http://localhost:8080/specifications/vec/v210/classes/complexproperty/


2.7.1 Motivation and Objective

The VEC provides a comprehensive model for the digital description of a wide variety of information and their relationships to each other in the context of the
electrical system development process. Despite the striving for the greatest possible semantic precision, the demand for general applicability of the standard

means that, at various points restrictions cannot be formulated to the same extent as it would be possible in the context of a very speci�c use case or a

company context. This applies to the following examples, among others:

The set of valid model elements: Probably no use case requires all 450+ classes of the VEC at the same time and the set of required model elements

is highly dependant from the use case itself.

Valid values for attributes: The allowed patterns and / or discrete values (enumerations) of attributes can depend on a speci�c use case or company
context and can even change over time (e.g. new technologies)

The balance between mandatory and optional information: The amount and completeness of information contained in a VEC depends on the use case

and process. While it might perfectly ok the have some missing information in an early phase of the process, it might intolerable at a later stage.

This implementation guideline presents three approaches for adapting the model to address the above issues in speci�c application scenarios, while still

maintaining compatibility with the standard:

1. Custom Open Enumerations: New literals can be added to open enumerations (see Open and Closed Enumerations)

2. XSD 1.1. Assertions: The schema can be enriched with assertions to be more restrictive.

3. Schema Filtering: With “Schema Filtering” the schema can be made less extensive and by this also more restrictive (Less allowed classes, attributes

etc.).

All these approaches have in common, that the schema of the standard is adapted / modi�ed in a suitable form. The result is a tailored “VEC” schema that is

speci�c for the use case, but still compatible with the regular VEC schema.

This Implementation Guideline explains how these modi�cations can be achieved in an e�cient way based on XSLT. XSLT is a useful technology, when:

you want to modify XML data,

you can de�ne the modi�cation based on rules,

the general structure of your result is close to the input,

and performance is not critical.

This makes it the perfect solution for this use case, where we want to modify the XML Schema of the VEC at very speci�c locations while keeping the rest

unchanged.

2.7.2 General Concept

source VEC schema
(e.g. vec_1.2.0-strict.xsd)

Customization Definition
(e.g. enum-literals.xml)

Compiler XSL
(e.g. vec-...-compiler.xsl)

Result
(custom_vec.xsd)

FIGURE 17:  Generation Process Overview

The general concept is illustrated in the �gure above. The customization rules are de�ned in an “compiler XSL-�le”. This �le de�nes how the extensions are

made in the schema syntactically. It compiles the customizations into an existing schema. For example, in case of open enumerations, the compiler �le

de�nes at which position in XSD new literals are to be inserted. The compiler �les are universal and independent of the speci�c context (e.g. company, use

case) of the customization. For open enumerations and assertions such compiler �les are provided here.

The actual customizations are de�ned in an external XML data �le (Customization De�nition in the �gure above). For example, in case of open enumerations,

the data �le de�nes which enumerations should be extended with which literals. This information is speci�c to the customization context and has to be

created by oneself during the customization process. The syntax of the data �le depends on the compiler �le, but is usually trivial.

To create a custom VEC schema, the desired schema variant (strict or not) of the underlying VEC version is passed into a XSLT transformation pipeline, with

the Compiler XSL as transformation. The data �le is side loaded from the Compiler XSL.

2.7.2.1 Run the Transformation

“Schema adaptions compatible to the regular VEC standard” means: A �le that can be successfully validated against the custom schema must

also validate against the regular XML Schema of the Standard (not the strict version, because of the nature of open enumerations).


The transformation requires a XSLT2 processor, like Saxon HE. The example transformation below is de�ned for Saxon HE Java. See the reference

documentation of your preferred XSLT processor or XML authoring suite to achieve similar.


http://localhost:8080/specifications/vec/v210/basic-datatypes/open-and-closed-enumerations/
https://www.w3.org/TR/xmlschema11-1/#cAssertions
https://en.wikipedia.org/wiki/XSLT
https://www.saxonica.com/


If the url-to-data-file.xml is a relative path, then it is relative to the compiler.xsl. The easiest way is to place required �les (including the data �le) in the

current working directory.

2.7.3 Open Enumerations

Open Enumerations are a concept in the VEC to have prede�ned values for attributes, whilst being open for extension (for details see the corresponding

recommendation chapter Open and Closed Enumerations). Two schema variants are provided o�cially for the VEC: the regular and the strict schema. The

regular schema can be used for pure syntax validation of VEC �les. However, it makes no restrictions for the use of values in attributes with an open

enumeration type. The strict schema restricts these attributes to have only values that are de�ned literals from the VEC standardization board in the
corresponding open enumeration. The advantage of using the strict schema is that you are able to validate that only de�ned literals have been used.

However, if you extend  an open enumeration with new literals, e.g. for your process speci�c requirements, or new wiring harness technologies, then the

strict schema validation will break. In this case it is not possible anymore to check if only de�ned values, either by the standard or the process, have been

used. Nevertheless, it would be highly appreciable to still have such a mechanism in place. To achieve this, you need an extended strict schema, that

includes the values from the standardization board and the process speci�c values. This implementation guideline is about creating such an extended strict
schema.

2.7.3.1 What you need

The generation of such an extended strict schema is done as described in section General Concept. As input, you need:

1. The Compiler XSL: vec-open-enum-compiler.xsl
2. A de�nition of your enumeration extensions, an example can be found here: enum-literals.xml

2.7.3.2 De�ne new Enumerations

The enum-literals.xml (link above) �le contains examples on how to add custom enumerations.

This example adds a literal with the name MyExampleLiteral to WireReceptionType with a description (Note that it is possible to include html tags) and a

literal without a description named MyExampleLiteral2. It also adds MyExampleLiteral3 to WireLengthType.

If a new VEC version is released, this �le can be used recreate an updated company speci�c scheme (without having to repeat all changes manual).

2.7.4 Schema Assertions

XSD 1.1 introduced a concept to de�ne Assertions within a XSD:

An assertion is a predicate associated with a type, which is checked for each instance of the type. If an element or attribute information item

fails to satisfy an assertion associated with a given type, then that information item is not locally valid with respect to that type.

Assertions are de�ned as XPath 2.0 expressions that are evaluated to true or false. This makes it possible to express much more meaningful rules in the

schema than it is possible with the pure syntax checking of XSD 1.0. In particular, it is not only possible to further restrict the multiplicities of attributes, but

more complex conditions, such as dependencies between attributes, can be expressed (e.g. like “if type is ‘rectangle’ then count(sides) must be greater equal

4”).

The great bene�t of this approach is, that these rules are validated during a regular schema validation with a standard XML Parser.

java -cp /path/to/saxon.jar net.sf.saxon.Transform \

   -xsl:./path/to/compiler.xsl 

   -s:/path/to/vec.xsd 

   -o:/path/to/result.xsd 

   data-file=url-to-data-file.xml

1

Note: With a little bit more XSLT foo, this concept to can also be used to de�ne process speci�c restrictions for attributes where VEC de�nes no

restrictions (e.g. RegEx-Patterns for part numbers).


<?xml version="1.0" encoding="UTF-8"?>

<enum-profile>

    <enum type="WireReceptionType">

        <literal name="MyExampleLiteral">

             My example description with html elements <br/>

        </literal>

        <literal name="MyExampleLiteral2" />

    </enum>

    <enum type="WireLengthType">

        <literal name="MyExampleLiteral3">

             My second example description

        </literal>

    </enum>

</enum-profile>

The evaluation of the XPath expression is done on any instance (context node) of the type where the assertion is de�ned as parentless root. That
means, only the context node and descendant nodes (see XPath Axes) of the context node can be used in the XPath expression. Functions like ..,

id() or idref() are not available.



http://localhost:8080/specifications/vec/v210/basic-datatypes/open-and-closed-enumerations/
http://localhost:8080/specifications/vec/guidelines/vec-open-enum-compiler.xsl
http://localhost:8080/specifications/vec/guidelines/enum-literals.xml
https://www.w3.org/TR/xmlschema11-1/#cAssertions
https://www.w3.org/TR/xpath20/
https://www.w3schools.com/xml/xpath_axes.asp


2.7.4.1 What you need

The generation of such an asserted schema is done as described in section General Concept. As input, you need:

1. The Compiler XSL: vec-assertions-compiler.xsl

2. A de�nition your custom assertions, an example can be found here: data-pro�le.xml

2.7.4.2 De�ne Assertions

The data-profile.xml (link above) �le contains examples on how to add custom assertions.

context type="..." de�nes the VEC class to which an assertion should be added. rule test="..." de�nes the XPath expression of the assertion that

should be added to corresponding type. The above data-profile results in the following XSD:

2.7.5 Schema Filtering

The VEC is a comprehensive model with a variety of classes and attributes. In very few cases all of them are needed at the same time. For this reason it may

be desirable to restrict the number of valid schema elements for speci�c interfaces. Schema Filtering can be useful in these cases.

For example, an interface for the exchange of UsageNodes would only require a handful of VEC core classes. Another scenario might be that you want to

prohibit the use of CustomProperty in your own process. Many scenarios are conceivable, in the core it always burns down to limiting the power of the VEC

purposefully to achieve a better controllability for certain use cases and interfaces.

Since the scenario of Schema Filtering is more complex and less straight forward, than the Open Enumerations scenario, the following section just provides

an idea for a possible approach and not a “ready-to-use” solution.

The basic idea here is, that an XSLT script simply removes all unnecessary elements and leaves the rest unchanged. You can use either a positive or negative

�lter approach. In our example, we use a negative �lter list (all elements on the list are removed). When removing a class it is not su�cient to only remove

the class itself. All usages of the class must be removed as well. A class that has mandatory usages by other classes, can not be removed unless all usages
are removed recursively till an optional point is reached.

The �le vec-tailor-schema.xsl contains an example on how to remove the Transformation2D from the VEC scheme. The following snippet shows the relevant

parts only. The rest of the XSLT script is known known as identity transformation (copy of the source into the destination without changes).

The �rst line removes the class itself. The second line removes all optional attributes with the type Transformation2D. If you validate the resulting schema

you can easily check if the Transformation2D has any mandatory usage that have been overlooked (it has not).

<?xml version="1.0" encoding="UTF-8"?>

<data-profile>

    <context type="ConductorSpecification">

        <rule test="CrossSectionArea">

             All conductors shall specify a cross section area. The cross section area is an 

             important parameter for numerous design rules (e.g. aggregated cross section area 

             of splices). 

        </rule>

        <rule test="CrossSectionArea/ValueComponent gt 0.0">

            A conductor with cross section area not greater than 0 is non-existent.

        </rule>

    </context>

    <context type="CavityAddOn">

        <rule test="WireAddOn/ValueComponent gt 0.0"/>

    </context>

</data-profile>

<?xml version="1.0" encoding="UTF-8"?>

...

<xs:complexType name="ConductorSpecification" abstract="true">

    <xs:complexContent>

        <xs:extension base="vec:Specification">

            <xs:sequence>

                ...

            </xs:sequence>

            <xs:assert test="CrossSectionArea">

                <xs:annotation>

                    <xs:documentation xml:lang="en"> All conductors shall specify a cross section

                        area. The cross section area is an important parameter for numerous design

                        rules (e.g. aggregated cross section area of splices). </xs:documentation>

                </xs:annotation>

            </xs:assert>

            <xs:assert test="CrossSectionArea/ValueComponent gt 0.0">

                <xs:annotation>

                    <xs:documentation xml:lang="en"> A conductor with cross section area not greater

                        than 0 is non-existent. </xs:documentation>

                </xs:annotation>

            </xs:assert>

        </xs:extension>

    </xs:complexContent>

</xs:complexType>

...

http://localhost:8080/specifications/vec/guidelines/vec-assertions-compiler.xsl
http://localhost:8080/specifications/vec/guidelines/data-profile.xml
http://localhost:8080/specifications/vec/v210/classes/usagenode/
http://localhost:8080/specifications/vec/v210/classes/customproperty/
http://localhost:8080/specifications/vec/guidelines/vec-tailoring-schema.xsl
https://en.wikipedia.org/wiki/Identity_transform


FIGURE 18:  Illustrating Model Snippet

Unfortunately IDREF attributes cannot be handled in this fashion automatically, but have to

be checked manually. The �gure on the right side displays the occurrenceOrUsage

association between OccurrenceOrUsageViewItem2D and OccurrenceOrUsage.
Associations are translated into IDREF or IDREFS in the XML Schema, in contrast to

aggregations that are translated into contained xs:element (compare Mapping of the VEC

Model to XML schema de�nition (XSD)). The XML Schema representation of the

association is the following:

That means a �ltering rule cannot be formulated based on the target type of the association, as this type unknown in the XSD (in contrast to contained
elements). Therefore a �ltering rule must be more speci�c by explicitly addressing each relevant association, like this:

1. Extension of open enumerations is perfectly valid as long as you adhere to the rules mentioned in the recommendation. ↩ 

3 PDM Information

3.1 Document Meta-information

FIGURE 19:  Document Meta Information

All information actually de�ned in a VEC �le is contained in a DocumentVersion. Additionally this DocumentVersion carries all the meta-information about

the underlying document (e.g. for a system schematic), This information is normally shown in drawings as a title block.

The DocumentVersion contains the information about the unique naming, a multilingual description, the DocumentNumber and so on. It has subelements to

de�ne the change history (ChangeDescription), the creation and the different approvals.

3.1.1 Information from the Title Block in VEC - according to ISO 7200

The title block in drawings contains information which identi�es the shown construction and documents the authorship and the responsibility. In addition to
that, further information can be shown in this title block e.g. for used IT systems. General requirements for data �elds in the title block are regulated in the

standard ISO 7200. Due to the fact that the VEC supports the modelling of drawing contents, these requirements can also be stored in the VEC.

    ...

    <xsl:template match="xs:complexType[@name='Transformation2D']" />

    <xsl:template match="xs:element[@type='vec:Transformation2D' and @minOccurs=0]" />

    ...

<xs:complexType name="OccurrenceOrUsageViewItem2D">

    <xs:complexContent>

        <xs:extension base="vec:ExtendableElement">

        <xs:sequence>

            ...

            <xs:element name="OccurrenceOrUsage" type="xs:IDREFS" minOccurs="0"/>

            ...

        </xs:sequence>

        </xs:extension>

    </xs:complexContent>

</xs:complexType>

    ...

    <xsl:template match="xs:element[@name='OccurrenceOrUsage' and

        ancestor::xs:complexType[@name='OccurrenceOrUsageViewItem2D']]" />

    ...

Note: Make sure that the resulting schema remains compatible with the standard (XML Schema and Model Speci�cation):

Do not remove elements that are mandatory!

Take extra care of usages via IDREF associations. These have to be checked in the model since the XML Schema is typeless for those

associations.



http://localhost:8080/specifications/vec/v210/classes/occurrenceorusageviewitem2d/
http://localhost:8080/specifications/vec/v210/classes/occurrenceorusage/
http://localhost:8080/specifications/vec/v210/xml-representation-of-the-model/mapping-of-the-vec-model-to-xml-schema-definition-xsd/
http://localhost:8080/specifications/vec/v210/xml-representation-of-the-model/mapping-of-the-vec-model-to-xml-schema-definition-xsd/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/changedescription/


The ISO requirements are shown in the tables below and in the last column the mapping to the VEC model can be found.

Identifying data �elds in the title block

Field name (from ISO 7200) Obligation Description Mapping to VEC

Legal owner M The name of

the legal
owner of the
document, e.g.

�rm, company,
enterprise. It
could be the

o�cial owner’s
name, an
abridged trade
name or a

logotype for
the
presentation.

DocumentVersion.CompanyName

Identi�cation number M The document

identi�cation
number is
used as the

reference to
the document.
The
identi�cation

number shall
be unique — at
least within the

organization of
the legal
owner.

DocumentVersion.DocumentNumber

Revision index O The revision

index identi�es
the revision
status of the
document.

Different
versions are
numbered in

consecutive
order by
means of, e.g.

a letter or
letter
combination A
to Z, then AA,

AB, AC … or
Figures 1, 2,3
… The letters I

and O should
be avoided
because they

are easily
confused with
the digits 1
and 0.

Alternatively,
the date of
issue �eld only

may be used.

DocumentVersion.DocumentVersion



Field name (from ISO 7200) Obligation Description Mapping to VEC

Date of issue M The date of
issue is the

date on which
the document
is o�cially
released for

the �rst time,
and that of
every

subsequent
released
version. It is

when the
document is
made available
for its intended

use. The date
of issue is
important for

legal reasons,
e.g. patent
rights,

traceability.

DocumentVersion.Creation.CreationDate

Segment/sheet number M The
segment/sheet
number
identi�es the

segment or
sheet.

DocumentVersion.SheetOrChapter.SheetNumber

Number of segments/sheets O This is the
total number

of segments or
sheets of
which the

document
consists.

DocumentVersion.NumberOfSheets

Language code O The language
code is used to

indicate the
language in
which the
language-

dependent
parts of the
document are

presented.

Not needed – each �eld value will be
represented by a ‘LocalizedString’ or

‘LocalizedTypedString’

Descriptive data �elds in the title block

Field name (from ISO 7200) Obligation Description Mapping to VEC

Title M The title refers
to the content

of the
document.

LocalizedTypedString with
the type ‚Title‘ in

DocumentVersion.Description
(see below)

Supplementary title O The
supplementary
title �eld may

be used to
give further
information on

the object,
when needed

LocalizedTypedString with
the type ‚SupplementaryTitle ‘
in

DocumentVersion.Description
(see below)

All Attributes in the VEC with the type AbstractLocalizedString can be realized either with an instance from the class LocalizedString or
LocalizedTypedString. While the LocalizedString must be used just once for each attribute and language code the LocalizedTypedString must be used once

for each attribute and language code AND each type. The OpenEnumertation LocalizedTypedStringType enables the possibility to place e.g. the title and the

supplementary title for e.g. ‘En’ in the description mapping.

http://localhost:8080/specifications/vec/v210/classes/abstractlocalizedstring/
http://localhost:8080/specifications/vec/v210/classes/localizedstring/
http://localhost:8080/specifications/vec/v210/classes/localizedtypedstring/


FIGURE 20:  LocalizedTypedStringType

Administrative data �elds in the title block

Field name (from ISO 7200) Obligation Description Mapping to VEC

Responsible department O The name or
code for the

organizational
unit
responsible
for the

contents and
maintenance
of the

document at
the date of
release.

DocumentVersion.Creation –>
ResponsibleDesigner.Department

Technical reference O The name of

the person
having
su�cient
knowledge of

the technical
contents of
the document

to be named
as the contact
person and

who will
answer,
coordinate
and act on

queries.

DocumentVersion.Creation –>

ResponsibleDesigner.Lastname

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

<Description xsi:type="vec:LocalizedTypedString" id="id_1">

   <LanguageCode>En</LanguageCode>

   <Type>Title</Type>

   <Value>Main Title goes here</Value>

</Description>

<Description xsi:type="vec:LocalizedTypedString" id="id_2">

   <LanguageCode>En</LanguageCode>

   <Type>Sublementary Title</Type>

   <Value>This is for the Sublementary Title</Value>

</Description>



Field name (from ISO 7200) Obligation Description Mapping to VEC

Approval person M The name of
the person

who approved
the document.
The document
might have

been checked
by a number
of different

specialists in
accordance
with the local

rules for that
type of
document,
speci�c

project etc.
The names of
such

specialists
may be
indicated in

the title block
or in a
separate
document

part.

DocumentVersion.Approval –>
Permission.Permitter.LastName \ \ If a different

number of different specialists have checked the
document, an instance of Approval each can be
used and the attribute levelOfApproval names
the effective scope

Creator M The creator or
person who
has prepared

or revised the
document.

DocumentVersion.Creation.Creator.LastName

Document type M The document
type �eld

indicates the
role of the
document

with respect
to its content
of information
and

representation
format.

DocumentVersion.DocumentType

Classi�cation/key words O The text or
code to

categorize the
contents of
the document

used for
retrieval.

Document status O The document
status

indicates
where the
document is
in its life

cycle. The
status is
indicated by

means of
terms such as
“In

preparation”,
“Under
approval”,
“Released”

and
“Withdrawn”.

DocumentVersion.Approval.Status



Field name (from ISO 7200) Obligation Description Mapping to VEC

Page number O The page
number is

usually
generated by
the
presentation

system.

DocumentVersion.SheetOrChapter.SheetNumber

Number of pages O The number
of pages is
dependent on

the
presentation
format used,

e.g. text font,
paper size
and character

size.

DocumentVersion.NumberOfSheets

Paper size O The size of
the form for
the original
document,

e.g. A4.

DocumentVersion.SheetOrChapter.SheetFormat

3.2 Item History

FIGURE 21:  Item History

This example demonstrates how chronological relationships between PartVersion can be established. The VEC offers two types of relationships:

1. Derivation: Derivation means that the successor of the relationship is a newly developed part (variant) based on an existing part.

2. Sequence: Sequence means that the successor is a replacement for the predecessor.

4 Electrological Layers
The VEC offers three layer, each representing a level of abstraction for describing electrologic. This is illustrated in the diagram on the right side (Figure 1).

The Architectural Layer de�nes the connectivity / communication links (see Net) between components, without making any speci�cations regarding the
physical realization. For example, this layer can be used to de�ne which Bus technologies used by E/E components and the network topology to

communicate with each other. To describe this layer in the VEC, the NetSpeci�cation and its subelements are used.

The System Schematic Layer is more detailed than the Architectural Layer. The electrological realization of the Nets from the Architectural Layer are de�ned.

Nets from Architectural Layer are realized by Connections. A connection has a de�ned electrical potential (see Signal). For example a “Body CAN Bus”,

represented by a single Net in the Architectural Layer, has the two electrical potentials, “Body CAN High” and “Body CAN Low”. In the System Schematic
Layer those are represented by two individual Connections.

However, the System Schematic Layer does not de�ne a speci�c physical realization of the connectivity. A Connection with three ends (like in the diagram on

the right) could be realized in many ways (e.g. a splice, a distribution component (star link), a double crimp, an IDC connection, …). To describe this layer in

the VEC, the ConnectionSpeci�cation and its subelements are used.

The Wiring Layer speci�es a concrete physical realization of the layers above and narrows their degrees of freedom. It is getting more concrete (e.g. it

de�nes the realization of the connection with three ends from the diagram on the right by a splice). Typically the Wiring Layer contains information such as

wire colors, cross section areas, conductor and plating materials.

Due to its similarity, the Wiring Layer uses the same basic model elements as the de�nition of concrete harness. However, the �exibility of the VEC model

allows the Wiring Layer to leave aspects unspeci�ed. For example, by using PartUsages instead of PartOccurrences, partial WireSpeci�cations can be used

instead of concrete PartVersions to describe the wiring. This makes it possible, for example, to de�ne wire cross-sections and colors without having to

http://localhost:8080/specifications/vec/v210/classes/partversion/
http://localhost:8080/specifications/vec/v210/classes/net/
http://localhost:8080/specifications/vec/v210/classes/netspecification/
http://localhost:8080/specifications/vec/v210/classes/net/
http://localhost:8080/specifications/vec/v210/classes/net/
http://localhost:8080/specifications/vec/v210/classes/connection/
http://localhost:8080/specifications/vec/v210/classes/signal/
http://localhost:8080/specifications/vec/v210/classes/net/
http://localhost:8080/specifications/vec/v210/classes/connection/
http://localhost:8080/specifications/vec/v210/classes/connection/
http://localhost:8080/specifications/vec/v210/classes/connectionspecification/
http://localhost:8080/specifications/vec/v210/classes/partusage/
http://localhost:8080/specifications/vec/v210/classes/partoccurrence/
http://localhost:8080/specifications/vec/v210/classes/wirespecification/
http://localhost:8080/specifications/vec/v210/classes/partversion/


Architectural Layer / NetSpecification

System Schematic Layer / ConnectionSpecification

Wiring Layer / PartUsageSpecification, ContactingSpecification,
MatingSpecification

ECU1

ECU2

ECU3
Body-CAN

ECU1

ECU2

ECU3
Body-CAN-Hi

Body-CAN-Low

ECU1

ECU2

ECU3
Z1

Z20.35 mm² 0.35 mm²

0.35 mm²

Tracability

Tracability

FIGURE 22:  Electrological Layers Overview

specify insulation materials.

4.1 System Schematic

4.1.1 System Schematic Basics

The system schematic is used to illustrate the electrical components (e.g. ECUs, sensors or

switches) in a vehicle electrical system and their connections to each other on an

electrological level without physical realization details. In many companies the system
schematic is speci�c for an individual system and not an individual vehicle variant. The

example below shows such a system schematic with four components (MX1.1, MX3.1,

MX3.2 and E1.1), which are connected to each other in some way. On the connection lines

the potential names can be found. Furthermore the component E1.1 is connected to

additional elements on another sheet / in another system, which is suggested by the arrow

on the very bottom. This is explained in more details in the section Partial Systems.

FIGURE 23:  System Schematic Example

To represent a system schematic in the VEC the ConnectionSpeci�cation and its subelements are used. E/E-Components (in some ECAD Systems called

Block) are represented by ComponentNodes. A ComponentNode is a node where an electrological component is located. It is a representative for an element
in the electric system, e.g. an actuator, a sensor, an ECU. This diagram contains the representation as VEC classes of the system schematic shown in the

example. The ComponentPort (Pins) of a ComponentNode are grouped into Connectors / Slots with the help of ComponentConnectors. In the example the

connectors are only represented implicitly by the pre�x “A” to the Pin-Number.

Even if the system schematic in this example only shows pins which are connected to other pins (of other components), the VEC representation of the

component (ComponentNode) is explicitly allowed to contain ComponentPorts for unused pins. For example a component with 5 pins where just pin no. 1

and 5 are connected in some way may contain ComponentPorts for the pins 2 - 4 (but is not required to). This underlines that these pins do physicaly exists.
There is no need of a reference from a Connection to one of the ComponentPorts via a ConnectionEnd.

Many processes de�ne documents that are similar to this layered structure in terms

of their content, but do not correspond to it one hundred percent. This means, for

example, that a process document “System Schematic” might contain many

aspects of the VEC layer “System Schematic”, but can also de�ne additional

information from the VEC Layer “Wiring”.

This is perfectly valid and an intended feature of the VEC.



http://localhost:8080/specifications/vec/v210/classes/connectionspecification/
http://localhost:8080/specifications/vec/v210/classes/componentnode/
http://localhost:8080/specifications/vec/v210/classes/componentnode/
http://localhost:8080/specifications/vec/v210/classes/componentport/
http://localhost:8080/specifications/vec/v210/classes/componentnode/
http://localhost:8080/specifications/vec/v210/classes/componentconnector/
http://localhost:8080/specifications/vec/v210/classes/componentnode/
http://localhost:8080/specifications/vec/v210/classes/componentport/
http://localhost:8080/specifications/vec/v210/classes/connection/
http://localhost:8080/specifications/vec/v210/classes/componentport/
http://localhost:8080/specifications/vec/v210/classes/connectionend/


FIGURE 24:  System Schematic Class Diagram

The following XML listing contains the component nodes and connection from the example above.

<Specification xsi:type="vec:ConnectionSpecification" id="id_connect_spec_1">

    <Identification>ConSpec_V..58L..</Identification>

    <ComponentNode id="id_comp_node_1">

        <Identification>MX1.1</Identification>

        <ComponentConnector id="id_component_connector_1">

            <Identification>A</Identification>

            <ComponentPort id="id_comp_port_1">

                <Identification>1</Identification>

            </ComponentPort>

        </ComponentConnector>

    </ComponentNode>

    <ComponentNode id="id_comp_node_2">

        <Identification>MX3.1</Identification>

        <ComponentConnector id="id_component_connector_2">

            <Identification>A</Identification>

            <ComponentPort id="id_comp_port_2">

                <Identification>1</Identification>

            </ComponentPort>

        </ComponentConnector>

    </ComponentNode>

    <ComponentNode id="id_comp_node_3">

        <Identification>MX3.2</Identification>

        <ComponentConnector id="id_component_connector_3">

            <Identification>A</Identification>

            <ComponentPort id="id_comp_port_3">

                <Identification>1</Identification>

            </ComponentPort>

        </ComponentConnector>

    </ComponentNode>

    <ComponentNode id="id_comp_node_4">

        <Identification>E1.1</Identification>

        <ComponentConnector id="id_component_connector_4">

            <Identification>A</Identification>

            <ComponentPort id="id_comp_port_4">

                <Identification>1</Identification>

            </ComponentPort>

        </ComponentConnector>

    </ComponentNode>

    <Connection id="id_connection_1">

        <Identification>V..58L..</Identification>

        <ConnectionEnd id="id_conn_end_1">

            <Identification>MX1.1-A1</Identification>

            <ConnectedComponentPort>id_comp_port_1</ConnectedComponentPort>

        </ConnectionEnd>

        <ConnectionEnd id="id_conn_end_2">

            <Identification>MX3.1-A1</Identification>

            <ConnectedComponentPort>id_comp_port_2</ConnectedComponentPort>

        </ConnectionEnd>

        <ConnectionEnd id="id_conn_end_3">

            <Identification>MX3.2-A1</Identification>

            <ConnectedComponentPort>id_comp_port_3</ConnectedComponentPort>

        </ConnectionEnd>

    </Connection>

    [...]

</Specification>



FIGURE 25:  Example of Potential Nodes on System Schematics

4.1.1.1 Potential Nodes

As mentioned before, the level of abstraction of the system schematic in

the VEC (represented by the ConnectionSpeci�cation) contains only the

electrological design and no physical design of the wiring harness.

Therefore, the black dots (circled in red) in the graphical example have only

a layouting purpose and do not represent a technical design decision (e.g.

to place a splice on this spot).

The expressed engineering intention is only that the connected pins (all

“A1”) have the same potential (are connected in some way). The decision

about a technical realization (e.g. splice, multicrimp, single wires) can not

be made is most cases at the stage of a system schematic, because a

technical realization depends on concrete variant combinations and might

be even different for different variants (see section Wiring) or it can be
unnecessary, because in a reduced 100% variant, there might be just two of

the three components left and a realization with a single wire would be

possible. As the VEC does not represent the graphical layout of documents

these nodes have no representation in VEC.

If the system schematic should explicitly contain the engineering intention

of a speci�c connection topology (e.g. a star like topology with a splice or a
potential distributor) this must be explicitly represented by an individual

design of one ore more ComponentNodes and Connections. Such a

ComponentNode should have the ComponentNodeType =

'PotentialDistributor'. The illustrations below show the example of a CAN bus system with and without explicit distribution.

CBA

CAN High

CAN Low

FIGURE 26:  Simple CAN bus example

CBA

CAN High

CAN Low

CAN

FIGURE 27:  CAN bus example with explicit distributor

As you can see in the illustration of the central distributed CAN bus, the component node of the distributor “CAN” uses internal connections to represent the
short-circuited pins. More information about internal conectivity can be found in this section below.

4.1.1.2 Partial Systems

During the development of individual systems or sub systems for a vehicle the corresponding system schematic is often incomplete (partial). This situation

arises from the fact, that most systems depend on some kind of infrastructure of the integrated overall vehicle system (e.g. power, ground or bus

connections), which is only a available in the context of the complete vehicle. In the example at the top such a link to an unspeci�ed infrastructure is

http://localhost:8080/specifications/vec/v210/classes/connectionspecification/
http://localhost:8080/specifications/vec/v210/classes/componentnode/
http://localhost:8080/specifications/vec/v210/classes/connection/
http://localhost:8080/specifications/vec/v210/classes/componentnode/


FIGURE 29:  Open Enumeration with OpenLink

represented by the down arrow, in the following sections this is called an open link.

To create a fully functional system, a partial system must be merged / combined with other partial systems. In this process matching open links are

connected (and thus removed) in order to create complete overall system. In the extended example this is illustrated by adding a second partial system
schematic (framed in red) to the original example from the top. The resulting overall system schematic of such a merge process would just contain a simple

connection between E.1.1 and M31.

FIGURE 28:  System schematic example with two parts

The mapping of this advanced schematic example into the VEC context it is the following (see this diagram).

To maintain the logical grouping of each partial system schematic, the content of each is contained in its own

DocumentVersion with a single ConnectionSpeci�cation in the same VecContent.

The open link is represented by a “virtual” ComponentNode. Its naming is arbitrary and shall be choosen in a way,

that a merge algorithm has the required information. For the clarity of the example it is here named GROUND.

Depending on the used merge algorithm the name can be irrelevant if the merge algorithm for example only
requires signal information.

The “virtual” component node shall be marked with the ComponentNodeType literal OpenLink (see on the right).

This diagram shows the extended version with the ComponentNode “GROUND”. As you can see the ComponentNode is

marked with the node type “OpenLink” (red mark) to clarify that this component is NOT part of the system schematic but

components from the plan DO HAVE a connection to it.

Caution: The strategy and algorithm to merge partial systems if individual for the different ECAD systems and

development processes. The VEC does not de�ne an algorithm or requires a speci�c strategy. The VEC only the means to

store and exchange the information that is required by those algorithms. When merging the de�nition of these partial systems together into one vehicle

system, it is mandatory to resolve these open links and replace them by determined ComponentNode elements or Connection:

Case 1: The open link component node is replaced by a real component with the required connectivity.

Case 2: If multiple real component nodes have connections to different open link component nodes, the open link nodes can be merged to a single
connection among the real component nodes.

Note: It is possible to reference a ComponentPort from a Connection.ConnectionEnd even if they are contained in different DocumentVersions.

http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/connectionspecification/
http://localhost:8080/specifications/vec/v210/classes/veccontent/
http://localhost:8080/specifications/vec/v210/classes/componentnode/
http://localhost:8080/specifications/vec/v210/classes/componentnodetype/
http://localhost:8080/specifications/vec/v210/classes/componentnode/
http://localhost:8080/specifications/vec/v210/classes/componentnode/
http://localhost:8080/specifications/vec/v210/classes/componentnode/
http://localhost:8080/specifications/vec/v210/classes/connection/
http://localhost:8080/specifications/vec/v210/classes/componentport/
http://localhost:8080/specifications/vec/v210/classes/connection/
http://localhost:8080/specifications/vec/v210/classes/connectionend/
http://localhost:8080/specifications/vec/v210/classes/documentversion/


FIGURE 30:  Advanced System Schematic Example

The following listing shows the additional ComponentNode as XML.

4.1.1.3 Internal Connectivity

The system schematic layer in the VEC allows not only the mapping of Connections between different ComponentNodes, but also the mapping of internal

connections within a ComponentNode. Examples are fuses, relays, power and potential distributors or fuse or relay carriers.

Power Distributor

FIGURE 31:  Example of a power distributor with internal connections

In the VEC these connections do not differ in modelling from ’normal’ ones in the level of abstraction of the system schematic. The only difference is the

value of the �ag isExternalEnd for their ConnectionEnds. The value of this �ag has to be set from the ComponentPorts point of view and its relation to the

Connection:

<Specification xsi:type="vec:ConnectionSpecification" id="id_connect_spec_1">

    <Identification>ConSpec_V..58L..</Identification>

    [...]

    <ComponentNode id="id_comp_node_4">

        <Identification>E1.1</Identification>

        <ComponentConnector id="id_component_connector_4">

            <Identification>A</Identification>

            <ComponentPort id="id_comp_port_4">

                <Identification>1</Identification>

            </ComponentPort>

        </ComponentConnector>

    </ComponentNode>

    <ComponentNode id="id_comp_node_5">

        <Identification>GROUND</Identification>

        <ComponentNodeType>OpenLink</ComponentNodeType>

        <ComponentConnector id="id_component_connector_5">

            <Identification>A</Identification>

            <ComponentPort id="id_comp_port_5">

                <Identification>1</Identification>

            </ComponentPort>

        </ComponentConnector>

    </ComponentNode>

    [...]

    <Connection id="id_connection_1">

        <Identification>GROUND..SYS_055A</Identification>

        <ConnectionEnd id="id_conn_end_1">

            <Identification>E1.1-A1</Identification>

            <ConnectedComponentPort>id_comp_port_4</ConnectedComponentPort>

        </ConnectionEnd>

        <ConnectionEnd id="id_conn_end_2">

            <Identification>GROUND-A1</Identification>

            <ConnectedComponentPort>id_comp_port_5</ConnectedComponentPort>

        </ConnectionEnd>

    </Connection>

</Specification>

http://localhost:8080/specifications/vec/v210/classes/componentnode/
http://localhost:8080/specifications/vec/v210/classes/connection/
http://localhost:8080/specifications/vec/v210/classes/componentnode/
http://localhost:8080/specifications/vec/v210/classes/componentnode/
http://localhost:8080/specifications/vec/v210/classes/connectionend/
http://localhost:8080/specifications/vec/v210/classes/componentport/
http://localhost:8080/specifications/vec/v210/classes/connection/


If the Connection is attached from the outside to the ComponentPort, e.g. it is a connection between two independent ComponentNodes, then it is

isExternalEnd = true.

If the connection is attached from the inside, e.g. it is a internal connection between two ComponentPorts of the same ComponentNode, then it is

isExternalEnd = false.

4.1.1.4 Inner Structure of Component Nodes

In the system schematic, components are often considered black boxes. However, there scenarios where this is not su�cient and a view on the inner

structure is required. Therefore, ComponentNode can be structured hierarchically. This requirement is also the logical consequence of the concept of

subdivided UsageNodes. Since ComponentNodes are representatives / realizations of UsageNodes, at least the same representation options are required

here (see this implementation guideline for more details).

Sub ComponentNodes are located inside their parent node. Connections to the “outer world” are mostly realized via a ComponentConnector of the parent

node and internal connectivity between the connector of the parent node and its children. The following graphic illustrates this situation. The internal
connections are shown as red lines.

A20 * 1
Main Beam

A20 * 2
Low Beam

Head Light Left (A20)

A20 * 3
Direction Ind.

Internal Connection

ComponentConnector

ComponentPort

FIGURE 32:  Illustration of SubNodes

The “outer world” (e.g. a system schematic or a wiring harness) interacts only with the parent node (black box). However, there are use cases, e.g. after sales

service, where it is relevant to know which element of the “outer world” (e.g. a wire or a pin) is connected to which sub node, e.g. “Which wire is the power
supply of the direction indicator?”. The representation of this information in the VEC is explained in the following paragraphs.

FIGURE 33:  Object Diagram for Working with SubUsageNodes

Disclaimer: This page or section is currently under review by the community.

The content of this page or section can be subject to change at any time. If you �nd any issues or if you have any review comments please drop us

an issue on the PROSTEP JIRA.

This page or section resolves KBLFRM-790

⚠

http://localhost:8080/specifications/vec/v210/classes/connection/
http://localhost:8080/specifications/vec/v210/classes/componentport/
http://localhost:8080/specifications/vec/v210/classes/componentnode/
http://localhost:8080/specifications/vec/v210/classes/componentport/
http://localhost:8080/specifications/vec/v210/classes/componentnode/
http://localhost:8080/specifications/vec/v210/classes/componentnode/
http://localhost:8080/specifications/vec/v210/classes/usagenode/
http://localhost:8080/specifications/vec/v210/classes/componentnode/
http://localhost:8080/specifications/vec/v210/classes/usagenode/
http://localhost:8080/specifications/vec/guidelines/key-concepts/usage-nodes/
http://localhost:8080/specifications/vec/v210/classes/componentnode/
http://localhost:8080/specifications/vec/v210/classes/componentconnector/
https://prostep-ivip.atlassian.net/projects/KBLFRM/
https://prostep-ivip.atlassian.net/browse/KBLFRM-790


Both, parent node as well as child nodes are represented as ComponentNodes (highlighted in orange in the diagram above). The child ComponentNodes

(e.g. “Low Light Node”) are contained in the parent ComponentNode (“Head Light Node”). A traceability to the corresponding UsageNode (highlighted in

green) can be created with the realizedUsageNode association.

The parent and the child nodes de�ne their electrical interface with ComponentConnectors and ComponentPorts. To represent the illustration, the parent

node de�nes one ComponentConnector with three ComponentPorts, the child node de�nes one ComponentConnector with one ComponentPort. The internal

connectivity is represented with a Connection between the ComponentPorts of the parent and the children (highlighted in red).

4.1.2 Variant Management For ECUs

FIGURE 34:  Variant Management for ECUs

This example demonstrates how the variant management can be handled in the systems schematic on different levels of abstraction.

The top most element is the usage node. It de�nes an abstract position / function in the vehicle. In the example it is the back light on the left hand side

(named “MX3”). This function can be realized by two different electrological variants (interfaces). These variants are represented by ComponentNodes. In the

example there is one variant with two pins (MX3.1) and one variant with three pins (MX3.2). On a more concrete level these interfaces can be satis�ed by

one or more EE-components (alternatives). These EE-Components are de�ned by PartVersion with a EEComponentSpeci�cation. In order to de�ne
restrictions a corresponding PartOccurrence with a VariantCon�guration can be de�ned.

The PartUsages in the example are needed for to reasons:

They serve as a container to group the different possible alternatives (“realizedPartUsage”).

It is necessary to declare one of the EEComponents as the representative of all alternatives of a variant. This is done by the reference between the

PartUsage and the corresponding EEComponentSpeci�cation.

4.2 Wiring

Note that the ConnectionEnds have different values for isExternalEnd. This is due to the fact that the end, that is connected to the port of the

parent node, is on the inside (isExternal=false from the perspective of the port), the end that is connected to the inner node, is on the outside

(isExternal=true).



http://localhost:8080/specifications/vec/v210/classes/componentnode/
http://localhost:8080/specifications/vec/v210/classes/componentnode/
http://localhost:8080/specifications/vec/v210/classes/componentnode/
http://localhost:8080/specifications/vec/v210/classes/usagenode/
http://localhost:8080/specifications/vec/v210/classes/componentconnector/
http://localhost:8080/specifications/vec/v210/classes/componentport/
http://localhost:8080/specifications/vec/v210/classes/componentconnector/
http://localhost:8080/specifications/vec/v210/classes/componentport/
http://localhost:8080/specifications/vec/v210/classes/componentconnector/
http://localhost:8080/specifications/vec/v210/classes/componentport/
http://localhost:8080/specifications/vec/v210/classes/connection/
http://localhost:8080/specifications/vec/v210/classes/componentport/
http://localhost:8080/specifications/vec/v210/classes/componentnode/
http://localhost:8080/specifications/vec/v210/classes/partversion/
http://localhost:8080/specifications/vec/v210/classes/eecomponentspecification/
http://localhost:8080/specifications/vec/v210/classes/partoccurrence/
http://localhost:8080/specifications/vec/v210/classes/variantconfiguration/
http://localhost:8080/specifications/vec/v210/classes/partusage/
http://localhost:8080/specifications/vec/v210/classes/eecomponentspecification/
http://localhost:8080/specifications/vec/v210/classes/connectionend/


C
ou

pl
in

g 
   

   
   

D
ev

ic
e

Coupling

Contacting

Connector

Terminal

Wire

E/E Component

Housing
Component

FIGURE 35:  Wiring Overview

The Wiring Layer in the VEC provides modeling concepts to de�ne the physical realization of electrological connections from the System Schematic Layer. In

the VEC, the same modeling concepts are use for this layer as for the mapping of a concrete wiring harness in the model.

However, in Wiring Layer representation the degree of freedom and number of unspeci�ed facts are typically greater, than in a harness de�nition. For
example the wiring layer would make statements about the cross section area of a wire or the color of its insulation, but it would not de�ne a speci�c

insulation material or wire length as the wiring layer is installation space agnostic in many development process.

Basically, there are three main modeling concepts:

1. The description and instantiation of parts (e.g. connectors, wires, terminals).

2. The contacting (marked with green dashed lines). It de�nes the relationship between terminals, wire ends and cavities.
3. The coupling (marked with red dashed lines). This is for connecting connectors with E/E components or with each other, or even to connect E/E

components with each other. It is explained in more detail in the guideline ““Coupling””

4.2.1 Description and Instantiation of Parts

In contrast to the Network Architecture and the System Schematic the Wiring Layer does not de�ne its own level of abstraction, instead it utilizes the existing
modeling concepts in the VEC to describe the physical properties of the electrologically relevant components.

It is possible to use concrete PartVersions in the Wiring Layer, but typically not all relevant properties are de�ned in the Wiring Layer, so mainly PartUsages

will be used (detailed description can be found here).

4.2.2 Contacting

The contacting in the VEC de�nes the relationship between Cavities (CavityReference), WireEnds, Terminals and Seals. Since there are various types of

contactings possible, the different types are not de�ned explicitly in the VEC. The VEC offers a quite generic structure (the Contacting), which should be able

to support all the different possible types. This is necessary, because the different contacting types are driven by technical requirements and new

contactings might emerge over the time. The downside of the generic structure is that the structural schema allows constellations that are not sensible from

a technical point of view as well. The following sections show the different contacting types used today, and how they have to be implemented in the VEC.

Since the contacting can be used for different levels of abstraction (Product De�niton or Electrological Wiring) only the “Role-Side” of the necessary objects

is shown. Necessary PartOrUsageRelatedSpeci�cations, PartOccurrences, PartUsages and PartVersion are omitted.

http://localhost:8080/specifications/vec/guidelines/elog-layers/system-schematic/
http://localhost:8080/specifications/vec/guidelines/product-definition/coupling/
http://localhost:8080/specifications/vec/v210/classes/partversion/
http://localhost:8080/specifications/vec/v210/classes/partusage/
http://localhost:8080/specifications/vec/guidelines/product-definition/component-description/
http://localhost:8080/specifications/vec/v210/classes/cavityreference/
http://localhost:8080/specifications/vec/v210/classes/wireend/
http://localhost:8080/specifications/vec/v210/classes/partorusagerelatedspecification/
http://localhost:8080/specifications/vec/v210/classes/partoccurrence/
http://localhost:8080/specifications/vec/v210/classes/partusage/
http://localhost:8080/specifications/vec/v210/classes/partversion/


4.2.2.1 Standard Contact

FIGURE 36:  Standard Contact

A standard Contacting is the most common case in a wiring harness. For a standard contact you have one wire end that has one terminal crimped on it,

which is placed in one cavity. It exists in two variants, sealed and unsealed. The example displays the sealed variant, for the unsealed variant the
CavitySealRole and the CavityPlugRole have to be omitted.

The contacting is de�ned by a ContactPoint, contained in a ContactingSpeci�cation. It is possible (and recommended) to de�ne multiple ContactPoints in

one ContactingSpeci�cation. Usally there exists one ContactingSpeci�cation per DocumentVersion in the scope. So for example if the VEC-File represents a

150%-Harness de�nition, then you will have on ContactingSpeci�cation for the complete harness.

A ContactPoint is de�ned as a point of exactly one electrical potential, which means all conducting components related to the ContactPoint are short-
circuited.

The ContactPoint de�nes the terminal that is used for the contacting. It is then split up into two parts, the side of the crimp of the terminal (represented by

the WireMounting) and the side of the terminal, which is placed in the cavity (represented by the CavityMounting). Since the example is about a sealed

standard contact, the WireMounting displayed references exactly one CavitySealRole and one WireEnd, which means these two components are crimped

together onto the terminal. On the other side the CavityMounting de�nes the Cavity in which the terminal will be placed. For a sealed environment it is

necessary, that the Cavity is plugged with a CavityPlug, in case the Cavity is not occupied by a contacting. If the Cavity is occupied, the CavityMounting
de�nes explicitly, which CavityPlugRoles are replaced by its existence.

4.2.2.2 Multi Crimp Contact

FIGURE 37:  Multi Crimp Contact

A Multicrimp is quite similar to the standard contact, with the difference that there is more than one wire crimped onto the terminal. Therefore the displayed

example is quite the same. The differences are:

http://localhost:8080/specifications/vec/v210/classes/cavitysealrole/
http://localhost:8080/specifications/vec/v210/classes/cavityplugrole/
http://localhost:8080/specifications/vec/v210/classes/contactpoint/
http://localhost:8080/specifications/vec/v210/classes/contactingspecification/
http://localhost:8080/specifications/vec/v210/classes/contactpoint/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/contactingspecification/
http://localhost:8080/specifications/vec/v210/classes/contactpoint/
http://localhost:8080/specifications/vec/v210/classes/contactpoint/
http://localhost:8080/specifications/vec/v210/classes/contactpoint/
http://localhost:8080/specifications/vec/v210/classes/wiremounting/
http://localhost:8080/specifications/vec/v210/classes/cavitymounting/
http://localhost:8080/specifications/vec/v210/classes/wiremounting/
http://localhost:8080/specifications/vec/v210/classes/cavitysealrole/
http://localhost:8080/specifications/vec/v210/classes/wireend/
http://localhost:8080/specifications/vec/v210/classes/cavitymounting/
http://localhost:8080/specifications/vec/v210/classes/cavitymounting/
http://localhost:8080/specifications/vec/v210/classes/cavityplugrole/


There is no CavityPlugRole or CavitySealRole, since it is not usefull / possible from a technical point of view to seal a multicrimp.

There are two (or more) WireEnds associated with the WireMounting.

For clari�cation of the example the two WireElementReferences reference their Signal. It is the same, since the two WireEnds are crimped onto one Terminal
and therefore they are set to one single electrical potential. This is only displayed in the example in order to make it clear, what is meant by “A ContactPoint

has one single electrical potential”. This is not a restriction of the VEC, since the development processes might need (or create) different signal names for

the same electrical potential.

4.2.2.3 Ringterminal - Splice

FIGURE 38:  Ringterminal and Splice

The structure displayed in the example applies to ring terminals and splices as well. On the side of the wire it is the same as a multi crimp. The difference is
that no cavity mounting is used, since a ring terminal / splice has no cavities.

4.2.2.4 Bridge Terminal

FIGURE 39:  Bridge Terminal

A bridge terminal is a terminal that has a wire crimped on it and which occupies more than one cavity (short-circuited). On the side of the wire it is the same

as a standard contact. On the side of the cavities it simply references more than one cavity.

http://localhost:8080/specifications/vec/v210/classes/cavityplugrole/
http://localhost:8080/specifications/vec/v210/classes/cavitysealrole/
http://localhost:8080/specifications/vec/v210/classes/wireend/
http://localhost:8080/specifications/vec/v210/classes/wiremounting/
http://localhost:8080/specifications/vec/v210/classes/wireelementreference/
http://localhost:8080/specifications/vec/v210/classes/wireend/
http://localhost:8080/specifications/vec/v210/classes/contactpoint/


4.2.2.5 Coax Contact

FIGURE 40:  Coax Contact

The diagram displays the proper de�nition of a coax contacting. In the case of coax contact one single terminal is used, but two different electrical potentials
are connected to it. Therefore two ConcactPoints are required, because one ContactPoint can only be used for one electrical potential (see the de�nition of a

ConcactPoint).

Both ContactPoints reference the same occurrence of the terminal (TerminalRole) and use the Cavity. Each ConcatPoint mounts a single WireElement to the

TerminalRole. In this example the two WireElements belong to the same multi-core wire.

In order to make the example more clearly, the next �gure displays the de�nition of such a “coax-cavity” in an EEComponent.

4.2.2.6 Coax Cavity

FIGURE 41:  Coax Cavity

The HousingComponent of an EEComponent de�nes on one hand the pins (electrological relevant information) in this HousingComponent and on the other

hand a ConnectorHousingSpeci�cation (the layout and design of the HousingComponent). The PinComponents are then positioned in the cavities. In the

case of a coax contact, two PinComponents (the different electrical potentials) are placed in one cavity.

The HousingComponent of an EEComponent de�nes on one hand the pins (electrological relevant information) in this HousingComponent and on the other
hand a ConnectorHousingSpeci�cation (the layout and design of the HousingComponent). The PinComponents are then positioned in the cavities. In the

case of a coax contact, two PinComponents (the different electrical potentials) are placed in one cavity.

4.2.3 Direct Connectivity

As is to be expected for the design of wiring harnesses, most of the electrological connections of a system

schematic are realized by wires. However, there are also cases where such connections are also realized without

wires, e.g. with a direct screwing connection or simple plugging of two E/E components. The most common use

case of such directly connected components are fuses which are plugged into a slot of a fuse carrier. Another

example is the battery isolator (German: “Batterietrennelement”), illustrated on the right side. The battery isolator is

connected directly to the battery with an integrated ring terminal, that is screwed onto the bolt of the battery. The

representation of this szenario is explained in the following paragraphs.

http://localhost:8080/specifications/vec/v210/classes/contactpoint/
http://localhost:8080/specifications/vec/v210/classes/contactpoint/
http://localhost:8080/specifications/vec/v210/classes/terminalrole/
http://localhost:8080/specifications/vec/v210/classes/cavity/
http://localhost:8080/specifications/vec/v210/classes/wireelement/
http://localhost:8080/specifications/vec/v210/classes/terminalrole/
http://localhost:8080/specifications/vec/v210/classes/wireelement/
http://localhost:8080/specifications/vec/v210/classes/housingcomponent/
http://localhost:8080/specifications/vec/v210/classes/housingcomponent/
http://localhost:8080/specifications/vec/v210/classes/connectorhousingspecification/
http://localhost:8080/specifications/vec/v210/classes/housingcomponent/
http://localhost:8080/specifications/vec/v210/classes/pincomponent/
http://localhost:8080/specifications/vec/v210/classes/pincomponent/
http://localhost:8080/specifications/vec/v210/classes/housingcomponent/
http://localhost:8080/specifications/vec/v210/classes/housingcomponent/
http://localhost:8080/specifications/vec/v210/classes/housingcomponent/
http://localhost:8080/specifications/vec/v210/classes/pincomponent/
http://localhost:8080/specifications/vec/v210/classes/pincomponent/


FIGURE 42:  Illustration of a Direct Screw Connection4.2.3.1 Mapping in the Wiring Layer

Each of the E/E component instances is build up in the same way as seen in this diagram. A EEComponentRole has

got one or more HousingComponentReferences with underlying PinComponentReferences for the pins. To make

statements about the technical details of such a pin, a TerminalRole is used.

FIGURE 43:  Example of Direct Screwing in the Wiring Layer

For the electrological connection / mapping of two pins, a MatingPoint is required, which creates the relation between the corresponding TerminalRoles. The

MatingPoints are contained within a CouplingPoint in the CouplingSpeci�cation. A CouplingPoint contains all MatingPoints for a single

HousingComponentReference / ConnectorHousingRole (a detailed description can be found in the recommendation chapter Coupling Speci�cation).

Note: In case of a terminal with multiple terminal receptions (with the possibility of separated potentials) a MatingDetail shall be used to de�ne the mapping
between speci�c TerminalReceptionReferences.

A detailed description of E/E components can be found in this tutorial.

4.2.3.2 Traceability to the System Schematic Layer

The system schematic layer contains no details about the physical realization. Therefore, no distinction is made in the system schematic layer between

direct connections and wired connection. It is even possible to have different realizations of the same system schematic, one with a direct connection and

one with a wired connection.

A detailed description to the system schamtic layer can be found in this tutorial.

To preserve traceability between the wiring layer and the system schematic, the element that realizes the the Connection has a reference to it. For a wired

connection, this is the WireElementReference. In case of a direct connection, this is the MatingPoint or MatingDetail, depending on which level an

unambiguous statement can be made. The following XML excerpt contains an example of traceability.

http://localhost:8080/specifications/vec/v210/classes/eecomponentrole/
http://localhost:8080/specifications/vec/v210/classes/housingcomponentreference/
http://localhost:8080/specifications/vec/v210/classes/pincomponentreference/
http://localhost:8080/specifications/vec/v210/classes/terminalrole/
http://localhost:8080/specifications/vec/v210/classes/matingpoint/
http://localhost:8080/specifications/vec/v210/classes/terminalrole/
http://localhost:8080/specifications/vec/v210/classes/matingpoint/
http://localhost:8080/specifications/vec/v210/classes/couplingpoint/
http://localhost:8080/specifications/vec/v210/classes/couplingspecification/
http://localhost:8080/specifications/vec/v210/connectivity/coupling-specification/
http://localhost:8080/specifications/vec/v210/classes/matingdetail/
http://localhost:8080/specifications/vec/v210/classes/terminalreceptionreference/
http://localhost:8080/specifications/vec/guidelines/ee-components/
http://localhost:8080/specifications/vec/guidelines/elog-layers/system-schematic/
http://localhost:8080/specifications/vec/v210/classes/connection/
http://localhost:8080/specifications/vec/v210/classes/wireelementreference/
http://localhost:8080/specifications/vec/v210/classes/matingpoint/
http://localhost:8080/specifications/vec/v210/classes/matingdetail/


<Specification xsi:type="vec:CompositionSpecification" id="id_composition_1">

    <Component id="id_component_1">

        <Identification>Battery</Identification>

        [...]

        <Role xsi:type="vec:EEComponentRole" id="id_ee_role_1">

            <Identification>Battery</Identification>

            <EEComponentSpecification>id_ecomponent_spec_1</EEComponentSpecification>

            <HousingComponentRef id="id_housing_comp_ref_1">

                <Identification>A</Identification>

                <HousingComponent>id_housing_comp_1</HousingComponent>

                <ConnectorHousingRole id="id_conHousingRole_1">

                    <ConnectorHousingSpecification>id_connect_hous_spec_1</ConnectorHousingSpecification>

                    <SlotReference xsi:type="vec:SlotReference" id="id_slotRef_1">

                        <ReferencedSlot>id_slot_1</ReferencedSlot>

                        <CavityReference id="id_cavityRef_1">

                            <Identification>1</Identification>

                            <ReferencedCavity>id_cavity_1</ReferencedCavity>

                        </CavityReference>

                        [...]

                    </SlotReference>

                </ConnectorHousingRole>

                <PinComponentRef id="id_pin_comp_ref_1">

                    <PinComponent>id_pin_comp_1</PinComponent>

                    <TerminalRole xsi:type="vec:TerminalRole" id="id_terminalRole_1">

                        <Identification>1</Identification>

                        <TerminalSpecification>id_terminal_spec_1</TerminalSpecification>

                    </TerminalRole>

                </PinComponentRef>

                [...]

            </HousingComponentRef>

        </Role>

    </Component>

    <Component id="id_component_2">

        <Identification>Isolator</Identification>

        [...]

        <Role xsi:type="vec:EEComponentRole" id="id_ee_role_2">

            <Identification>Isolator</Identification>

            <EEComponentSpecification>id_ecomponent_spec_2</EEComponentSpecification>

            <HousingComponentRef id="id_housing_comp_ref_2">

                <Identification>A</Identification>

                <HousingComponent>id_housing_comp_2</HousingComponent>

                <ConnectorHousingRole id="id_conHousingRole_2">

                    <ConnectorHousingSpecification>id_connect_hous_spec_1</ConnectorHousingSpecification>

                    <SlotReference xsi:type="vec:SlotReference" id="id_slotRef_2">

                        <ReferencedSlot>id_slot_2</ReferencedSlot>

                        <CavityReference id="id_cavityRef_2">

                            <Identification>1</Identification>

                            <ReferencedCavity>id_cavity_2</ReferencedCavity>

                        </CavityReference>

                    </SlotReference>

                    [...]

                </ConnectorHousingRole>

                <PinComponentRef id="id_pin_comp_ref_2">

                    <PinComponent>id_pin_comp_2</PinComponent>

                    <TerminalRole xsi:type="vec:TerminalRole" id="id_terminalRole_2">

                        <Identification>1</Identification>

                        <TerminalSpecification>id_terminal_spec_2</TerminalSpecification>

                    </TerminalRole>

                </PinComponentRef>

            </HousingComponentRef>

            [...]

        </Role>

    </Component>

</Specification>

[...]

<Specification xsi:type="vec:CouplingSpecification" id="id_coupling_1">

    <CouplingPoint>

        <Identification>Battery-Isolator</Identification>

        <FirstConnector>id_conHousingRole_1</FirstConnector>

        <SecondConnector>id_conHousingRole_2</SecondConnector>

        <MatingPoint>

            <Identification>Mating-Battery-Isolator</Identification>

            <FirstTerminalRole>id_terminalRole_1</FirstTerminalRole>

            <SecondTerminalRole>id_terminalRole_2</SecondTerminalRole>

            <Connection>id_connection_1</Connection>

        </MatingPoint>

    </CouplingPoint>

</Specification>

[...]

<Specification xsi:type="vec:ConnectionSpecification" id="id_connect_spec_1">

    <Identification>ConSpec</Identification>

    <Connection id="id_connection_1">

        <Identification>PowerDistribution</Identification>

        <ConnectionEnd id="id_conn_end_1">

            <Identification>Battery</Identification>

            <ConnectedComponentPort>id_comp_port_1</ConnectedComponentPort>

        </ConnectionEnd>

        <ConnectionEnd id="id_conn_end_2">

            <Identification>Isolator</Identification>

            <ConnectedComponentPort>id_comp_port_2</ConnectedComponentPort>

        </ConnectionEnd>

    </Connection>



FIGURE 44:  Coupling Device Example

4.3 Coupling Devices

In the context of the VEC, a coupling device is:

… the (virtual) device that separates / connects two or more wiring harnesses. “Virtual”

because it can be interpreted as a device / interface de�nition between the harnesses,

where one harness behaves like an E/E component form the point of view of the other

harness .

That means, at a coupling device a larger electrical system is divided into multiple

harnesses. There can be various reasons for such a division and depending on these

reasons, coupling devices can be de�ned at different points in the development process.
Often there are assembly requirements that make a subdivision necessary (e.g. between

the door and main body). If an electrical connection is de�ned between those separate

installation spaces, it crosses a coupling device and is split up at this point. Whether a connection crosses such a coupling device or not can often be only

determined after the routing process in a concrete context of the packaging of a speci�c vehicle. Such coupling devices are often only relevant in a geometry
/ topology perspective and for the wiring of a speci�c harness and not in an architectural or system schematic layer.

However, there are also coupling devices that serve other purposes and therefore, must be de�ned early in the electrological branches of the development
processes, i.e. in the architecture layer or the system schematic. A schematic diagram of such coupling device can be found in the �gure above and will be

example for the following sections.

4.3.1 Basic Concept

FIGURE 45:  Concept of coupling devices in the VEC

The basic idea for a mapping in the VEC for such coupling points between different harnesses is, to consider them as virtual E/E components with an

internal connectivity. When looking at such a point on a real wiring harness, we will just see two or more connectors that are plugged into each other.

However, the de�nition of a virtual component between these connectors in the product model creates multiple advantages:

The representation in the system schematic is analogous to other E/E components. Traceability with the wiring layer can be achieved in a uniform way.

When just looking at a single wiring harness, all connectors can be connected to an E/E component, no connectors are “hanging in thin air”.

The virtual E/E component can be used as an interface contract and a point of separation between different development and process partners or

even development lifecycles. For example, the wiring harness of a seat does not need to “know” everything about the complete electrical network of

the vehicle. It just requires an interface de�nition of the E/E component “rest of the vehicle”.

The virtual E/E component can be used to enforce standards for speci�c coupling points, for example a consistent pinning between the doors and the
main body across multiple carlines.

    [...]

</Specification>

1



4.3.2 System Schematic

FIGURE 46:  Coupling Device in a System Schematic

The �gure above illustrates minimal representation of a coupling device in the system schematic with just one connector and only one pin on each side. The

coupling device itself is represented in the VEC with a ComponentNode with the ComponentNodeType ='CouplingDevice'. For each side of the coupling
device it contains a ComponentConnector. These connectors include the ComponentPorts, which represent the pins of the connector.

The connectivity between the port on each side is represented with a internal Connection with two ConnectionEnds, which reference the connected

ComponentPorts. The �ag isExternalEnd of the Ends is set to false, because the connection represents the internal mapping of ports within the coupling

device. Connections to other ComponentNodes would be represented by different Connections with ConnectionEnds where isExternal=true.

4.3.2.1 Document Structure

Like with any self-contained piece of information in the VEC, for traceability reasons the de�nition of a _coupling device should be in the correct

DocumentVersion. Section General Structure explains the general concept of DocumentVersion and their containments. As described there, the containment

of Speci�cations in their DocumentVersions has a semantic meaning. The correct placement of a coupling device in a containing DocumentVersion is a
perfect example for that.

Depending on the engineering process, system schematic relevant coupling device might be de�ned in some kind of master data process, enforcing

standardized coupling devices for a speci�c scope. In that case, one or more of those standardized coupling devices would be managed and published

together, and then reused in a speci�c system schematic. This is illustrated in the �gure “Information Structure” below, on the left side of the �gure.

On the other, it would also be perfectly valid to have no company wide management process for coupling devices. In this case, the coupling devices would be
de�ned implicitly within a system schematic. This is illustrated on the right side of the �gure.

Master Data
DocumentVersion

System Schematic A
DocumentVersion

System Schematic B
DocumentVersion

CouplingDevice:
ComponentNode

A: ComponentNode

B: ComponentNode

C: ComponentNode

D: ComponentNode

System Schematic A
DocumentVersion

System Schematic B
DocumentVersion

CouplingDevice:
ComponentNode

A: ComponentNode B: ComponentNode

C: ComponentNode D: ComponentNodeCouplingDevice:
ComponentNode

Master Data Approach Individual Approach

FIGURE 47:  Information Structure

4.3.2.2 XML Example

The XML snippet below contains the portions of a coupling device de�nition that belong to the system schematic layer.

http://localhost:8080/specifications/vec/v210/classes/componentnode/
http://localhost:8080/specifications/vec/v210/classes/componentconnector/
http://localhost:8080/specifications/vec/v210/classes/componentport/
http://localhost:8080/specifications/vec/v210/classes/connection/
http://localhost:8080/specifications/vec/v210/classes/connectionend/
http://localhost:8080/specifications/vec/v210/classes/componentport/
http://localhost:8080/specifications/vec/v210/classes/componentnode/
http://localhost:8080/specifications/vec/v210/classes/connection/
http://localhost:8080/specifications/vec/v210/classes/connectionend/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/guidelines/key-concepts/general-structure/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/specification/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/documentversion/


4.3.3 Wiring

4.3.3.1 Traceability

Even without having an explicit coupling device de�nition (with a virtual E/E component) in the wiring layer, a traceability over a coupling device from one

wiring harness to another is possible with the help of the system schematic layer.

Taking the ComponentNode De�nition from above as a foundation, it is only necessary to create the traceability relations from the harness connectors to the

system schematic layer, as illustrated in the �gure below.

FIGURE 48:  Assigning harness connectors to a coupling device

Below is the corresponding XML snippet.

<DocumentVersion id="id_docu_ver_16475">

  <Description xsi:type="vec:LocalizedString" id="id_16476">

    <LanguageCode>De</LanguageCode>

    <Value>Definition der Trennstelle TQVL</Value>

  </Description>

  <DocumentNumber>TQVL</DocumentNumber>

  <DocumentVersion>1</DocumentVersion>

  <DocumentType>MasterDataDefinition</DocumentType>

  <DataFormat>VEC</DataFormat>

  <Specification xsi:type="vec:ConnectionSpecification" id="id_connect_spec_1">

    <Identification>ConSpec_TZY5-DV12a</Identification>

    <ComponentNode id="id_comp_node_6">

      <Identification>TQVL</Identification>

      <ComponentNodeType>CouplingDevice</ComponentNodeType>

      <RealizedUsageNode>[id ref to usage node]</RealizedUsageNode>

      <ComponentConnector id="id_component_connector_1">

        <Identification>TQVL.1A</Identification>

        <ComponentPort id="id_component_port_1">

          <Identification>1</Identification>

        </ComponentPort>

      </ComponentConnector>

      <ComponentConnector id="id_component_connector_2">

        <Identification>TQVL.2A</Identification>

        <ComponentPort id="id_component_port_2">

          <Identification>1</Identification>

        </ComponentPort>

      </ComponentConnector>

    </ComponentNode>

    <Connection id="id_connection_1">

      <Identification>TQVL.A1</Identification>

      <ConnectionEnd id="id_conn_end_1">

        <Identification>TQVL.A.1</Identification>

        <IsExternalEnd>false</IsExternalEnd>

        <ConnectedComponentPort>id_component_port_1</ConnectedComponentPort>

      </ConnectionEnd>

        <ConnectionEnd id="id_conn_end_2">

        <Identification>TQVL.A.2</Identification>

        <IsExternalEnd>false</IsExternalEnd>

        <ConnectedComponentPort>id_component_port_2</ConnectedComponentPort>

      </ConnectionEnd>

    </Connection>

  </Specification>

</DocumentVersion>

At the moment, this section of the Implementation Guideline only contains the traceability of the wiring to the system schematic. The

representation of coupling devices in wiring layer with E/E components and the concrete mapping of harnesses against those will addressed at a
later stage. See KBLFRM-798 for more details.



http://localhost:8080/specifications/vec/v210/classes/componentnode/
https://prostep-ivip.atlassian.net/browse/KBLFRM-798


1. see ComponentNodeType ↩ 

5 Product De�nition of a Harness
The de�nition of the product itself (the wiring harness) is one of the major use cases of the VEC. The �gure below illustrates the basic building blocks in the

data model, to do this and shall give some guidance where to look for speci�c topics. It is not a complete map of the VEC.

<Component id="component_1">

  <Identification>TQVL.1A1</Identification>

  <Role xsi:type="vec:ConnectorHousingRole" id="connectorHousingRole_1">

    <Identification>TQVL.1A1</Identification>

    <ConnectorHousingSpecification>connectorHousingSpecification_1</ConnectorHousingSpecification>

    <ConnectedComponentConnector>id_component_connector_1</ConnectedComponentConnector>

    <SlotReference xsi:type="vec:SlotReference" id="slotRef_1">

      <Identification>A</Identification>

      <ReferencedSlot>slot_1</ReferencedSlot>

      <CavityReference id="cavityRef_1">

        <Identification>1</Identification>

        <ReferencedCavity>cavity_1</ReferencedCavity>

      </CavityReference>

    </SlotReference>

  </Role>

  [...]

</Component>

<Component id="component_2">

  <Identification>TQVL.2A1</Identification>

  <Role xsi:type="vec:ConnectorHousingRole" id="connectorHousingRole_2">

    <Identification>TQVL.2A1</Identification>

    <ConnectorHousingSpecification>connectorHousingSpecification_2</ConnectorHousingSpecification>

    <ConnectedComponentConnector>id_component_connector_2</ConnectedComponentConnector>

    <SlotReference xsi:type="vec:SlotReference" id="slotRef_2">

      <Identification>A</Identification>

      <ReferencedSlot>slot_2</ReferencedSlot>

      <CavityReference id="cavityRef_2">

        <Identification>1</Identification>

        <ReferencedCavity>cavity_2</ReferencedCavity>

        <ConnectedComponentPort>id_component_port_2</ConnectedComponentPort>

      </CavityReference>

    </SlotReference>

  </Role>

  [...]

</Component>

<Component id="component_3">

  <Identification>TQVL.2A2</Identification>

  <Role xsi:type="vec:ConnectorHousingRole" id="connectorHousingRole_3">

    <Identification>TQVL.2A2</Identification>

    <ConnectorHousingSpecification>connectorHousingSpecification_2</ConnectorHousingSpecification>

    <ConnectedComponentConnector>id_component_connector_2</ConnectedComponentConnector>

    <SlotReference xsi:type="vec:SlotReference" id="slotRef_3">

      <Identification>A</Identification>

      <ReferencedSlot>slot_2</ReferencedSlot>

      <CavityReference id="cavityRef_3">

        <Identification>1</Identification>

        <ReferencedCavity>cavity_2</ReferencedCavity>

      </CavityReference>

    </SlotReference>

  </Role>

  [...]

</Component>

http://localhost:8080/specifications/vec/v210/classes/componentnodetype/


Component Specification / Part Master Data

Specifications

Instances of Components Composite Parts

Behaviour & Relationship
Definitions

Parts

Component Characteristics

PartUsages
(Abstract / Requirements)

PartOccurrences
(Concrete)

Routing

Placement

Contacting

General Component Data

Harness

Modules

Assemblies

Foundation & Traceability Information

Schematic & Wiring Topology

Geometrie

Coupling

FIGURE 49:  Building Blocks of a Harness Product De�nition

A wiring harness consists of recurring components that are produced and installed in large quantities (e.g. connectors, wires, terminals, seals etc.). These

elements have properties that are the same for all elements of a speci�c type and are independent of their use. In most cases, such types are identi�ed in

speci�c company context as a part with a unique part number. The description of those common properties is often referred to as “Part Master Data”. The

“Component Speci�cation / Part Master Data” section (blue box on the right hand side) is represents this type of information. This area is explained in more

detail in the section “Component Speci�cation”.

A wiring harness de�nition is then formed withe speci�c uses of those components (“types”), whereby a component can also occur several times. Each

individual instance of a component can have additional properties speci�c to its usage (e.g. signal & length of a wire, name of connector, etc). Those
properties are de�ned in the block “Instances of Components”, highlighted in green. In this area, the VEC has the ability to differentiate between abstract

instances of components (PartUsage), where a speci�c component is not yet de�ned, but some properties are known, and instances of concrete

components (PartOccurrence)

Based on those instances, you can specify bill of materials (BOM), with or without variance, for composite parts, which can be in turn used hierarchically as

instances for more complex parts (block on the right side, highlighted in orange). See “Composite Parts”.

In addition to the BOM view, it is also important to establish the relationships of the components to each other and to other elements of the wiring harness

de�nition (e.g. topology or electrology). This is done with the “Behaviour Relationship De�nitions” (highlighted in violet), speci�cations that de�ne speci�c

relationships e.g. routing, placement or contacting and traceability relationships between components and de�nitions in layers of higher abstraction.

5.1 Component Description

This section explains the concepts for the representation of part master data and component speci�cations in the VEC. For a general explanation of the

terms, see the parent section Product De�nition. If you search information about speci�c component types e.g. wires, connectors etc. see Component Types

Before reading these implementation guidelines, it is highly recommended to read the “Description of Parts” section in the VEC Online Model

Description.


http://localhost:8080/specifications/vec/guidelines/product-definition/component-description/
http://localhost:8080/specifications/vec/v210/classes/partusage/
http://localhost:8080/specifications/vec/v210/classes/partoccurrence/
http://localhost:8080/specifications/vec/guidelines/product-definition/composite-parts/
http://localhost:8080/specifications/vec/guidelines/product-definition/
http://localhost:8080/specifications/vec/guidelines/component-types/
http://localhost:8080/specifications/vec/v210/general-component-data/description-of-parts/


FIGURE 50:  Aspects of a Component Description

Due to the various supported use cases, the VEC’s concept for component speci�cations is designed modular. The �gure above contains the most relevant

elements

Note: The picture is for illustration purpose only and is taken from a current VEC version at the time of writing. The classes, attributes etc. might have
changed in the mean time.

The unique identi�cation of a component is its PartVersion. It is serves as an identi�er and contains only additional PDM information like Approval,Creation

or ChangeDescription. The actual description of the properties of a component is done via PartOrUsageRelatedSpeci�cations, whereby each speci�cation

covers only a certain aspect of the component. A holistic description of a component is a combination of multiple speci�cations, but no more than one of a

speci�c speci�cation type at a time. Those speci�cations can be divided into two groups:

1. General Component Data: Speci�cations in this group describe general properties of components that are applicable to all or at least a large group of

components. For example:
GeneralTechnicalPartSpeci�cation for common properties like weight or material for all component types.

PlaceableElementSpeci�cation for components that have an explicitly de�ned position in the harness topology lik wire protections, connectors

or �xings.

LocalGeometrySpeci�cation for information about the component’s geometry model, e.g. the bounding box, transformations, segment

connection points.

2. Component Characteristics: Speci�cations in this group describe properties that are very speci�c for a certain component type, e.g. WireSpeci�cation

for wires or ConnectorHousingSpeci�cation for connectors. In most cases, a part can be clearly assigned to one of these categories. However, there

can be cases of “hybrid” components that fall into more than one category. In this case, the PrimaryPartType de�nes the primary character of the
components. A detailed description can be found here: “Description of Parts”.

5.1.1 Unclassi�ed / Custom Component Types

The VEC natively supports a wide range of component types and attributes for them. Nevertheless, this list is probably not exhaustive when considering
which component types could potentially appear in the BOM of a wire harness and could also be added by future developments.

Currently, the list of directly supported types is derived from the speci�c requirements of the VEC and is focused on those components that have a speci�c

relationship with other components in the harness (e.g. wires/connectors) and whose attributes play a strong role in the selection processes during

development.

However, following its principle of openness and extendability, the VEC provides a possibility to add such components, that are not speci�cally supported by
it, in a de�ned way as user/process de�ned components. The necessary elements to do this are:

1. The PrimaryPartType to use is Other.

2. “General Component Data” can be added with corresponding speci�cations analogous to a regular component (see above).

3. The “Component Characteristics” is expressed by an instance of PartOrUsageRelatedSpeci�cation itself (no subclass).

4. The concrete type of the component (for regular components expressed by the PrimaryPartType), is de�ned in the

PartOrUsageRelatedSpeci�cation.SpecialPartType-Attribute.
5. Speci�c attributes of the “new” type (not available via “General Component Data”) can be added as CustomProperty to the

PartOrUsageRelatedSpeci�cation.

�. Instancing is done via a Speci�cRole (see chapter “Instances of unde�ned Components” in the Speci�cation for Details).

An example in XML of such a custom component can be found in the XML Listings section at the end of this page.

http://localhost:8080/specifications/vec/v210/classes/partversion/
http://localhost:8080/specifications/vec/v210/classes/approval/
http://localhost:8080/specifications/vec/v210/classes/creation/
http://localhost:8080/specifications/vec/v210/classes/changedescription/
http://localhost:8080/specifications/vec/v210/classes/partorusagerelatedspecification/
http://localhost:8080/specifications/vec/v210/classes/generaltechnicalpartspecification/
http://localhost:8080/specifications/vec/v210/classes/placeableelementspecification/
http://localhost:8080/specifications/vec/v210/classes/localgeometryspecification/
http://localhost:8080/specifications/vec/v210/classes/wirespecification/
http://localhost:8080/specifications/vec/v210/classes/connectorhousingspecification/
http://localhost:8080/specifications/vec/v210/classes/primaryparttype/
http://localhost:8080/specifications/vec/v210/general-component-data/description-of-parts/
http://localhost:8080/specifications/vec/v210/classes/primaryparttype/
http://localhost:8080/specifications/vec/v210/classes/partorusagerelatedspecification/
http://localhost:8080/specifications/vec/v210/classes/partorusagerelatedspecification/
http://localhost:8080/specifications/vec/v210/classes/customproperty/
http://localhost:8080/specifications/vec/v210/classes/partorusagerelatedspecification/
http://localhost:8080/specifications/vec/v210/classes/specificrole/
http://localhost:8080/specifications/vec/v210/instances-of-components/instances-of-undefined-components/


DocumentVersion GeneralTechnicalPartSpecification

PlaceableElementSpecification

ConnectorHousingSpecification

SlotSpecification

CavitySpecification

...

PartVersion

referencedPart

describedPart

FIGURE 51:  Part Master Documents

5.1.2 PartMaster - DocumentVersions

A part master document describes the properties of a component or a group of
components (a PartVersion or a set of PartVersions). It can be recognised with the

DocumentType = PartMaster. A schematic illustration can be found in the �gure on the

right side. It contains some general purpose speci�cations (highlighted in light blue) and

component characteristics (highlighted in strong green), in most cases one. Those

speci�cations are not mandatory and only necessary if the corresponding information

aspect is relevant in the use case and can be provided.

Additionally, the document could contain auxillary speci�cations that are required for a

complete component description (in the illustration the CavitySpeci�cation and

SlotSpeci�cation highlighted in light green).

The emphasis here is on “could”, as this is a quite common case, but a process-speci�c

interpretation of component de�nitions. For example, if the cavity system is described and

released together with the connector (in the same document), it makes sense that the
corresponding speci�cation is included in the same DocumentVersion. However, if the

cavity system is de�ned and released independently, i.e. in a separate document, and used

by multiple connectors, it would be appropriate to place it in its own DocumentVersion and

reuse the information in the document of the connectors (see Reuse of Documents).

5.1.2.1 Content Requirements

In an omniscient view of the world, it would be possible to formulate logical constraints and

minimum requirements for the content of a PartMaster-Document, such as mandatory

content or a logical relationship between the PrimaryPartType and the types of descriptive

speci�cations that have to be used. For example, it could be stated that each component should have a GeneralTechnicalPartSpeci�cation and one
PartOrUsageRelatedSpeci�cation corresponding to its type (e.g. a ConnectorHousingSpeci�cation when the PrimaryPartType = ConnectorHousing).

However, a given VEC �le can only be a fragment of this complete picture. The availability of information in a VEC depends on the speci�c use case, the

process, the point in the process, the degree of maturity of the tooling, “need to know” and IP-protection policies and many more. Therefore, even if there are

logical constraint, they are not enforced in the VEC.

5.1.3 XML Listings

The listing below contains an example of the general structure of a PartMaster VEC, additionally it does not contain a regular VEC component, but also

illustrates the usage of “Custom Component Types”.

http://localhost:8080/specifications/vec/v210/classes/partversion/
http://localhost:8080/specifications/vec/v210/classes/partversion/
http://localhost:8080/specifications/vec/v210/classes/documenttype/
http://localhost:8080/specifications/vec/v210/classes/cavityspecification/
http://localhost:8080/specifications/vec/v210/classes/slotspecification/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/guidelines/key-concepts/general-structure/#combination-and-reuse-of-documents
http://localhost:8080/specifications/vec/v210/classes/primaryparttype/
http://localhost:8080/specifications/vec/v210/classes/generaltechnicalpartspecification/
http://localhost:8080/specifications/vec/v210/classes/partorusagerelatedspecification/
http://localhost:8080/specifications/vec/v210/classes/connectorhousingspecification/


5.2 Instances of Components

This Implementation Guideline complements the Speci�cation Chapter Instantiation of Components with concrete examples and detailed de�nitions for

speci�c use cases. Component instantiation in the context of the VEC means the speci�c usage of a component in a de�ned function, location or place.

Instantiation implies that there is something to be instantiated, which is the type de�nition. This type de�nition is often referred to as part master data or

component speci�cation. For example a “black connector with 12 pins” is a type de�nition, where as the “connector of the left head light (black with 12 pins)”

is an instance.

The �gure below gives a brief overview of how instantiation of components �t into the overall picture of the VEC and how this different for PartOccurrences

and PartUsages.

<vec:VecContent id="id_00000" xmlns:vec="http://www.prostep.org/ecad-if/2011/vec">

    <VecVersion>2.0.1</VecVersion>

    <GeneratingSystemName>VEC Samples</GeneratingSystemName>

    <DateOfCreation>2022-10-07T00:00:00</DateOfCreation>

    <GeneratingSystemVersion>0.0.1</GeneratingSystemVersion>

    <DocumentVersion id="id_00001">

        <CompanyName>prostep ivip</CompanyName>

        <DocumentNumber>D-213454-143-31</DocumentNumber>

        <DocumentType>PartMaster</DocumentType>

        <DocumentVersion>1</DocumentVersion>

        <ReferencedPart>id_00007</ReferencedPart>

        <Specification xsi:type="vec:GeneralTechnicalPartSpecification" id="id_00002" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

            <Identification>P-213454-143-30</Identification>

            <DescribedPart>id_00007</DescribedPart>

            <ColorInformation id="id_00003">

                <Key>RD</Key>

                <ReferenceSystem>IEC 60757</ReferenceSystem>

            </ColorInformation>

        </Specification>

        <Specification xsi:type="vec:PartOrUsageRelatedSpecification" id="id_00004" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

            <CustomProperty xsi:type="vec:NumericalValueProperty" id="id_00005">

                <PropertyType>power</PropertyType>

                <Value id="id_00006">

                    <UnitComponent>id_00008</UnitComponent>

                    <ValueComponent>1.21</ValueComponent>

                </Value>

            </CustomProperty>

            <Identification>P-213454-143-30</Identification>

            <SpecialPartType>FluxCapacitor</SpecialPartType>

            <DescribedPart>id_00007</DescribedPart>

        </Specification>

    </DocumentVersion>

    <PartVersion id="id_00007">

        <CompanyName>prostep ivip</CompanyName>

        <PartNumber>P-213454-143-30</PartNumber>

        <PartVersion>1</PartVersion>

        <PrimaryPartType>Other</PrimaryPartType>

    </PartVersion>

    <Unit xsi:type="vec:SIUnit" id="id_00008" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

        <SiUnitName>Watt</SiUnitName>

        <SiPrefix>Giga</SiPrefix>

    </Unit>

</vec:VecContent>

Before reading these implementation guidelines, it is highly recommended to read the “Instantiation of Components” section in the VEC Online

Model Description.


http://localhost:8080/specifications/vec/v210/instances-of-components/instantiation-of-components/
http://localhost:8080/specifications/vec/v210/classes/partoccurrence/
http://localhost:8080/specifications/vec/v210/classes/partusage/
http://localhost:8080/specifications/vec/v210/instances-of-components/instantiation-of-components/


DocumentVersion: PartMaster

GeneralTechnicalPartSpecification

PlaceableElementSpecification

ConnectorHousingSpecification

SlotSpecification

CavitySpecification

...

PartVersion

describedPart

DocumentVersion: HarnessDescription

CompositionSpecification

PartUsageSpecification

PartUsage : A120

PartOccurrence: A121

ConnectorHousingRole

PlaceableElementRole

...

ConnectorHousingRole

PlaceableElementRole

...

Composite Parts /
Behaviour & Relationships

FIGURE 52:  Comparison of PartUsages and PartOccurrences

On the left hand side is a part master de�nition (as described in Component Description). On the right hand side is a DocumentVersion (in this example a

HarnessDescription) containing instances of components and additional information.

The two instantiation approaches of the VEC are illustrated with one representative for each. The PartUsage “A120” and the PartOccurrence “A121”.

PartUsages and PartOccurrences are de�ned in different containers (CompositionSpeci�cation vs. PartUsageSpeci�cation). Both can coexist and be used at

the same time in the same containing DocumentVersion.

On the far right hand side can be seen, that other areas in the VEC (indicated in orange on the right side) can use these instances regardless of the
instantiation concept used.

5.2.1 Relationship to Part Master Data

The information related to a component instance is in the VEC always logically divided in type de�nition and instance speci�c properties. In the VEC Type
de�nitions are contained in Speci�cations, instance speci�c properties are contained in Roles.

The one major difference between the PartOccurrence and the PartUsage is the way how both are referring to their respective type de�nition. The

PartOccurrence references its part master data speci�cations indirectly via a PartVersion. It is described by PartOrUsageRelatedSpeci�cations) and can be

reused for multiple PartOccurrences. In contrast to this, PartUsage, references the speci�cations directly itself without the detour over the PartVersion. The

PartUsage can be interpreted as a hybrid of PartVersion and PartOccurrence in a single entity.

One notable difference is, the direction of the relationship with PartOrUsageRelatedSpeci�cations. The direction for the PartUsage is inverse direction

compared to PartVersion. A PartVersion is described by speci�cations, wheres a PartUsage references the relevant speci�cations. This has logical reasons

in the assumed information lifecycle of the corresponding entities. A PartVersion is a pointer to a “real” component. Over the time, this component can be

described with more information (adding speci�cation) without changing the component itself. On the other hand, a PartUsage is de�ned in place by

associating appropriate speci�cations, those speci�cations can be created for this individual PartUsage or being reused for multiple PartUsage. Therefore,

speci�cation could be referenced over the time by more PartUsages without being changed.

A PartUsage shall reference all PartOrUsageRelatedSpeci�cations that provide relevant information about itself. This includes general component data and

component characteristics that are relevant in the context (compare to “Component Description”). This does not include any speci�cations that are used

transitively by other speci�cations (e.g. not the ConnectorHousingSpeci�cation that de�nes the HousingComponent of an EEComponentSpeci�cation, which

is used for the PartUsage). This is illustrated in the Figure below (references between Speci�cations & Roles are omitted).

http://localhost:8080/specifications/vec/guidelines/product-definition/component-description/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/partusage/
http://localhost:8080/specifications/vec/v210/classes/partoccurrence/
http://localhost:8080/specifications/vec/v210/classes/partusage/
http://localhost:8080/specifications/vec/v210/classes/partoccurrence/
http://localhost:8080/specifications/vec/v210/classes/compositionspecification/
http://localhost:8080/specifications/vec/v210/classes/partusagespecification/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/specification/
http://localhost:8080/specifications/vec/v210/classes/role/
http://localhost:8080/specifications/vec/v210/classes/partoccurrence/
http://localhost:8080/specifications/vec/v210/classes/partusage/
http://localhost:8080/specifications/vec/v210/classes/partoccurrence/
http://localhost:8080/specifications/vec/v210/classes/partversion/
http://localhost:8080/specifications/vec/v210/classes/partorusagerelatedspecification/
http://localhost:8080/specifications/vec/v210/classes/partoccurrence/
http://localhost:8080/specifications/vec/v210/classes/partusage/
http://localhost:8080/specifications/vec/v210/classes/partversion/
http://localhost:8080/specifications/vec/v210/classes/partusage/
http://localhost:8080/specifications/vec/v210/classes/partversion/
http://localhost:8080/specifications/vec/v210/classes/partoccurrence/
http://localhost:8080/specifications/vec/v210/classes/partorusagerelatedspecification/
http://localhost:8080/specifications/vec/v210/classes/partusage/
http://localhost:8080/specifications/vec/v210/classes/partversion/
http://localhost:8080/specifications/vec/v210/classes/partversion/
http://localhost:8080/specifications/vec/v210/classes/partusage/
http://localhost:8080/specifications/vec/v210/classes/partversion/
http://localhost:8080/specifications/vec/v210/classes/partusage/
http://localhost:8080/specifications/vec/v210/classes/partusage/
http://localhost:8080/specifications/vec/v210/classes/partusage/
http://localhost:8080/specifications/vec/v210/classes/partusage/
http://localhost:8080/specifications/vec/v210/classes/partusage/
http://localhost:8080/specifications/vec/v210/classes/partorusagerelatedspecification/
http://localhost:8080/specifications/vec/guidelines/product-definition/component-description/
http://localhost:8080/specifications/vec/v210/classes/connectorhousingspecification/
http://localhost:8080/specifications/vec/v210/classes/housingcomponent/
http://localhost:8080/specifications/vec/v210/classes/eecomponentspecification/
http://localhost:8080/specifications/vec/v210/classes/partusage/


GeneralTechnicalPartSpecification

PlaceableElementSpecification

ConnectorHousingSpecification

SlotSpecification

CavitySpecification

PartUsage : A120

PlaceableElementRole

EEComponentRole
EEComponentSpecification

HousingComponent: A1

Slot: 1

Cavity: 1

HousingComponentReference

ConnectorHousingRole

...

FIGURE 53:  PartUsage with its Speci�cations and Roles

In the example from the beginning (�gure “Comparison of PartUsages and PartOccurrences”), the PartUsage references the speci�cations from a PartMaster
DocumentVersion. However, this approach is not mandatory and the only reason here, is to keep the example as simple as possible. Depending on the

context, different approaches to provide a PartUsage with speci�cations are possible. Reusing existing part master data (as shown in the example) is one.

Putting the speci�cations in an independent DocumentVersion (e.g. a company standard or a type de�nition) is another one and last but not least, the

speci�cations could also be de�ned in the same context as the PartUsages.

5.2.2 Instantiation with Roles

PartOccurrences and PartUsages are containing the Roles corresponding to their PartOrUsageRelatedSpeci�cations (see both �gures above, references

between the roles & speci�cations are omitted in the �gures for reasons of readability). Directly under PartOccurrence or PartUsage only Roles shall be used,

that have PartOrUsageRelatedSpeci�cations de�ned directly in the corresponding part master data. Transitive dependencies (e.g.

ConnectorHousingSpeci�cation & Role in the �gure above) are created in the appropriate subcontext, as de�ned by the VEC Model.

Following the principle of optionality in the VEC, it is not required to create Roles, for all the PartOrUsageRelatedSpeci�cations referenced in the part master

data, if the corresponding aspect is not relevant in the individual context.

The contained Roles and their referenced PartOrUsageRelatedSpeci�cation do not have to be exactly the same. They can be subset of those, but not a

superset.

5.2.3 Shared Speci�cations

In the example above, the PartUsage and the PartVersion are using the same PartOrUsageRelatedSpeci�cations. Such a reuse (or sharing) of information

pieces is perfectly valid. However, it does not implicate, that the PartUsage is an instance of the PartVersion. The precise meaning is, that in the �nal product

a selected component, which is taking the place of the PartUsage, is required to satisfy the requirements expressed by the referenced speci�cations. In the

example above, those requirements could be satis�ed by this particular PartVersion, however, this might not be the only valid choice.

When PartUsages and PartVersions share speci�cations, this has no deeper meaning than that it is a reuse of a block of information. In particular, the

following aspects apply:

The PartUsage is not required to reference all the speci�cations of the PartVersion. It can even reference contradicting speci�cations, for example:

The PartUsage could reference only the ConnectorHousingSpeci�cation, if the other properties are not a strict requirement.

The PartUsage could reference the ConnectorHousingSpeci�cation of the PartVersion, but a different GeneralTechnicalPartSpeci�cation, if for
example the requirements for weight, color or robustness are different.

The PartOrUsageRelatedSpeci�cation for the PartUsage can describe a PartVersion at the same time, but they are not required to. That means, a PartUsage

is free to de�ne its own speci�cations, for example in its own context (DocumentVersion) or in a separate DocumentVersion.

5.2.4 Realization of PartUsages with PartOccurrences

Although PartUsage and PartOccurrence can coexist at the same time (shown in �gure 1), they represent different levels of abstraction. The coexistence is

only possible, because in reality, a product de�nition of a harness can contain different layers of abstraction at the same time as well (e.g. some components

can be de�ned in 150% de�nitions and some are only determinable in a 100% de�nition).

http://localhost:8080/specifications/vec/v210/classes/partusage/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/partusage/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/partusage/
http://localhost:8080/specifications/vec/v210/classes/partoccurrence/
http://localhost:8080/specifications/vec/v210/classes/partusage/
http://localhost:8080/specifications/vec/v210/classes/role/
http://localhost:8080/specifications/vec/v210/classes/partorusagerelatedspecification/
http://localhost:8080/specifications/vec/v210/classes/partoccurrence/
http://localhost:8080/specifications/vec/v210/classes/partusage/
http://localhost:8080/specifications/vec/v210/classes/role/
http://localhost:8080/specifications/vec/v210/classes/partorusagerelatedspecification/
http://localhost:8080/specifications/vec/v210/classes/role/
http://localhost:8080/specifications/vec/v210/classes/partorusagerelatedspecification/
http://localhost:8080/specifications/vec/v210/classes/role/
http://localhost:8080/specifications/vec/v210/classes/partorusagerelatedspecification/
http://localhost:8080/specifications/vec/v210/classes/partusage/
http://localhost:8080/specifications/vec/v210/classes/partversion/
http://localhost:8080/specifications/vec/v210/classes/partorusagerelatedspecification/
http://localhost:8080/specifications/vec/v210/classes/partversion/
http://localhost:8080/specifications/vec/v210/classes/partversion/
http://localhost:8080/specifications/vec/v210/classes/partusage/
http://localhost:8080/specifications/vec/v210/classes/partversion/
http://localhost:8080/specifications/vec/v210/classes/partusage/
http://localhost:8080/specifications/vec/v210/classes/partversion/
http://localhost:8080/specifications/vec/v210/classes/partusage/
http://localhost:8080/specifications/vec/v210/classes/connectorhousingspecification/
http://localhost:8080/specifications/vec/v210/classes/partusage/
http://localhost:8080/specifications/vec/v210/classes/connectorhousingspecification/
http://localhost:8080/specifications/vec/v210/classes/partversion/
http://localhost:8080/specifications/vec/v210/classes/generaltechnicalpartspecification/
http://localhost:8080/specifications/vec/v210/classes/partorusagerelatedspecification/
http://localhost:8080/specifications/vec/v210/classes/partusage/
http://localhost:8080/specifications/vec/v210/classes/partversion/
http://localhost:8080/specifications/vec/v210/classes/partusage/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/partusage/
http://localhost:8080/specifications/vec/v210/classes/partoccurrence/


Wiring Schematic

Variant A

SIG-1 : PartUsage

0.35mm² - blue

Variant B

SIG-1' : PartUsage

0.5mm² - blue

Harness Definition

1 : PartOccurrence

{Variant A & B}
FLRYW- 0,5 - sn- BL
1200mm

realizedPartUsage

realizedPartUsage

FIGURE 54:  Realization of PartUsages with PartOccurrences

Figure 2 presents a highly simpli�ed situation for the sake of the concept. On the left hand side is a wiring de�nition with two Variants, A & B. A & B have the

same logical connectivity, however, variant B has a slightly higher power output, resulting in a PartUsage (a requirement!) for variant B with a larger wire cross

section area. The wiring also de�nes the color of the wire. However, other signi�cant properties are left open (e.g. insulation material) for later determination.

In the following design process, the other properties required for a component selection are de�ned (e.g. the insulation material, when the location of the

wire in the vehicle is known). It is also decided, that it is more e�cient to realize both variants with a single wire (satisfying both requirements at same time).

Traceability is preserved in the case, with the RealizedPartUsage reference from PartOccurrence to PartUsage. The fact that a PartOccurrence can realize the

requirements of multiple PartUsages at the same time is the reason that the multiplicity of this association is “0..*”.

5.3 Composite Parts

Whereas the model description de�nes the general concepts of multilevel composite parts and 100% and 150% variance for those parts, this implementation
guideline follows a use case oriented approach and explains the correct usage of the different aspects of a VEC implementation (e.g. BOM, document

structure, variance, instantiation) for different composite part scenarios. The most common ones are de�ned in the PartStructureContentType open

enumeration. The PartStructureSpecification.Content attribute de�nes, which kind of part, that has a bill of material, is described by a

PartStructureSpeci�cation and how the described bill of material has to be interpreted in regard of variance (10%, 100%, 150%).

5.3.1 Assemblies

Assemblies are prede�ned components, that are typically de�ned in a central place (e.g. a component library), reused in multiple projects / harnesses and

whose inner structure is relevant for the harness design or the development process. Therefore, they are not considered atomic and information about their

structure, subcomponents, etc is required. Often, assemblies are de�ned within their own drawings and have individual part numbers. Examples could be

multipart connectors, �xings, grommets or, more complicated, preassembled cables like USB or LVDS.

Component Library

USB Cable 12345

Connector A Wire Connector B

Usage

Infotainment USB Driver

A20*1 Wire A21*1

Infotainment USB Passenger

A20*2 Wire A22*2

Assembly

Legend

Subcomponent

FIGURE 55:  Basic Concept of an Assembly

The �gure above illustrates very simpli�ed the concept of an assembly and its usage. On the left hand side you can see the library or part master data

de�nition of the assembly, on the right hand side you can see its usage.

The level of detail for the mapped information of an assembly can range from a pure bill of material view to even a well de�ned “mini harness”. A pure bill of

material view is often not su�cient, especially if the speci�c usage of the assembly in a larger wiring harness has to be de�ned precisely (e.g., for
preassembled cables the placement of the connectors, the routing of the cable, a.s.o.).

5.3.1.1 Part Master Data

The following �gure “Assembly De�nition” illustrates the basic structure of a part master data de�nition of an assembly. The upper half of the diagram

contains the actual de�nition of the assembly, the lower half (highlighted in blue) contains the de�nition and details of the utilized subcomponents.

Before reading these implementation guidelines, it is highly recommended to read the “Composite Part Descriptions” section and its subsections

in the VEC Online Model Description �rst.


http://localhost:8080/specifications/vec/v210/classes/partusage/
http://localhost:8080/specifications/vec/v210/classes/partoccurrence/
http://localhost:8080/specifications/vec/v210/classes/partusage/
http://localhost:8080/specifications/vec/v210/classes/partoccurrence/
http://localhost:8080/specifications/vec/v210/classes/partusage/
http://localhost:8080/specifications/vec/v210/classes/partstructurecontenttype/
http://localhost:8080/specifications/vec/v210/classes/partstructurespecification/
http://localhost:8080/specifications/vec/v210/composite-part-descriptions/


SubComponent-A:
PartVersion

SubComponent-B:
PartVersion

Assembly:
PartVersion

Assembly-Definition : DocumentVersion

GeneralTechnicalPartSpecification

SubComponent-A-Definition: DocumentVersion

ABCSpecification

SubComponent-B-Definition: DocumentVersion

XYZSpecification
DescribedPart

DescribedPart

DescribedPart

PartStructureSpecification

DescribedPart

CompositionSpecification

ContactingSpecification

Component A: PartOccurence
....

Component B: PartOccurence
...

Part

Part

Definition of
subcomponents

Definition of Assembly

InBillOfMaterial

InBillOfMaterial

FIGURE 56:  Assembly De�nition (Part Master Data)

To de�ne an assembly a DocumentVersion is required to contain all necessary Speci�cations (the “Assembly De�nition” highlighted in green). This

DocumentVersion has the DocumentType = "PartMaster", just the same as for any other simple component. It can contain any Speci�cation required to

describe the assembly (like a GeneralTechnicalPartSpeci�cation).

To describe the inner structure of an assembly, instances of its subcomponents are needed. The instances of the subcomponents can be de�ned either with

PartOccurrences or PartUsages, depending on whether the information about speci�c parts / part numbers of the subcomponents is required / available, or

if the subcomponents are just needed as reference elements to de�ne the concrete usage of the assembly in a harness.

To de�ne the instances of the subcomponents a container speci�cation is required within the DocumentVersion that de�nes the assembly. This is either a

CompositionSpeci�cation or a PartUsageSpeci�cation, depending on the type of instances used for the assembly. In case of the example PartOccurrences

are used, and thus a CompositionSpeci�cation is used as container.

The content of the assembly is de�ned explicitly with a PartStructureSpeci�cation that references the instances contained in the assembly as

InBillOfMaterial and referencing the PartVersion of the assembly as DescribedPart. In other words, the PartStructureSpeci�cation represents the bill of

material (BOM) of the assembly (or any other composite part in the VEC). The PartStructureSpeci�cation de�nes Content="Assembly" and the PartVersion
of the assembly has a PrimaryPartType = "PartStructure".

If any information about the subcomponents or their relationships should be de�ned in a more detailed way (e.g. the contacting of a preassembled cable)

appropriate Speci�cations can be added to the DocumentVersion of the assembly as needed (indicated in the �gure with the ContactingSpecification). An

assembly can even de�ne its own topology (TopologySpeci�cation) or schematic (ConnectionSpeci�cation).

XML Example

Both the CompositionSpeci�cation and the PartUsageSpeci�cation are just used as container to de�ne instances of components. They do not

make a statement about the content of an assembly. Not even implicitly by being contained in the DocumentVersion de�ning the assembly. For

this reason, neither the CompositionSpeci�cation nor the PartUsageSpeci�cation is a PartOrUsageRelatedSpeci�cation. This modelling approach

enables the VEC to de�ne for example 150% wiring harnesses or assembly families (see later in this implementation guideline).



http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/specification/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/specification/
http://localhost:8080/specifications/vec/v210/classes/generaltechnicalpartspecification/
http://localhost:8080/specifications/vec/v210/classes/partoccurrence/
http://localhost:8080/specifications/vec/v210/classes/partusage/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/compositionspecification/
http://localhost:8080/specifications/vec/v210/classes/partusagespecification/
http://localhost:8080/specifications/vec/v210/classes/partoccurrence/
http://localhost:8080/specifications/vec/v210/classes/compositionspecification/
http://localhost:8080/specifications/vec/v210/classes/partstructurespecification/
http://localhost:8080/specifications/vec/v210/classes/partversion/
http://localhost:8080/specifications/vec/v210/classes/partstructurespecification/
http://localhost:8080/specifications/vec/v210/classes/partstructurespecification/
http://localhost:8080/specifications/vec/v210/classes/partversion/
http://localhost:8080/specifications/vec/v210/classes/specification/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/topologyspecification/
http://localhost:8080/specifications/vec/v210/classes/connectionspecification/
http://localhost:8080/specifications/vec/v210/classes/compositionspecification/
http://localhost:8080/specifications/vec/v210/classes/partusagespecification/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/compositionspecification/
http://localhost:8080/specifications/vec/v210/classes/partusagespecification/
http://localhost:8080/specifications/vec/v210/classes/partorusagerelatedspecification/


5.3.1.2 Usage of an Assembly

An assembly is normally used in a context different from its de�nition, e.g., the assembly is de�ned in a master data library and used in a wiring harness. The

following �gure “Assembly Instantiation” illustrates this scenario.

SubComponent-A:
PartVersion

SubComponent-B:
PartVersion

Assembly:
PartVersion

Assembly-Definition : DocumentVersion

GeneralTechnicalPartSpecification

SubComponent-A-Definition: DocumentVersion

ABCSpecification

SubComponent-B-Definition: DocumentVersion

XYZSpecification
DescribedPart

DescribedPart

DescribedPart

PartStructureSpecification

DescribedPart

CompositionSpecification

ContactingSpecification

Component A: PartOccurence
....

Component B: PartOccurence
...

Part

Part

Definition of
subcomponents

Definition of Assembly

Instantiation-Definition : DocumentVersion

CompositionSpecification

Component A*: PartOccurence
....

Component B*: PartOccurence
...

Assembly-Instance: PartOccurence

PartWithSubComponentsRole

Part

Part

Part

InstanciatedOccurrence

InstanciatedOccurrence SubComponent

SubComponent

...Specification

InBillOfMaterial

InBillOfMaterial

FIGURE 57:  Assembly Instantiation

The instantiation of an assembly is normally done in a separate DocumentVersion (e.g. the de�nition of a harness, highlighted in purple in the �gure above).

The assembly itself is instantiated with a PartOccurrence and a PartWithSubComponentsRole, which is the corresponding Role for a

PartStructureSpeci�cation. Additionally, all subcomponents (referenced by the PartStructureSpeci�cation) must be instantiated in the using context as well

(Component A* & Component B*). By default, those are clones of their part master data de�nitions. To preserve traceability between occurrences from the
part master de�nition and the occurrences in instantiation context, each instance is referencing its corresponding part master data occurrence as

InstantiatedOccurrence. In order to identify their a�liation to a particular assembly instance the PartWithSubComponentsRole references all of them as

SubComponent.

<PartVersion id="id_1001_0">

    <Description id="id_A1" xsi:type="vec:LocalizedString">

        <LanguageCode>En</LanguageCode>

        <Value>Composite Part A1</Value>

    </Description>

    <CompanyName>Example Corp.</CompanyName>

    <PartNumber>N.1</PartNumber>

    <PrimaryPartType>PartStructure</PrimaryPartType>

</PartVersion>

...

<DocumentVersion id="id_1002_0">

    <CompanyName>Example Corp.</CompanyName>

    <DocumentNumber>N.1</DocumentNumber>

    <DocumentType>PartMaster</DocumentType>

    <ReferencedPart>id_1001_0</ReferencedPart>

    <Specification id="id_2000_0" xsi:type="vec:PartStructureSpecification">

        <Identification>P1</Identification>

        <DescribedPart>id_1001_0</DescribedPart>

        <Content>Assembly</Content>

        <InBillOfMaterial>id_2000_2 id_2000_3</InBillOfMaterial>

    </Specification>

    <Specification id="id_2000_1" xsi:type="vec:CompositionSpecification">

        <Identification>C1</Identification>

        <Component id="id_2000_2">

            <Identification>A</Identification>

            <Part>id_1001_1</Part>

            ...

        </Component>

        <Component id="id_2000_3">

            <Identification>B</Identification>

            <Part>id_1001_2</Part>

            ...

        </Component>

    </Specification>

</DocumentVersion>

http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/partoccurrence/
http://localhost:8080/specifications/vec/v210/classes/partwithsubcomponentsrole/
http://localhost:8080/specifications/vec/v210/classes/role/
http://localhost:8080/specifications/vec/v210/classes/partstructurespecification/
http://localhost:8080/specifications/vec/v210/classes/partstructurespecification/
http://localhost:8080/specifications/vec/v210/classes/partwithsubcomponentsrole/


At a �rst glance, this detailed approach may seem partially redundant and super�uous. However, it offers the possibility to rede�ne properties of the

occurrences in the usage and also allows precise de�nition of the actual usage. Here are some examples:

Rede�nition of identi�er and descriptions and associations: Connectors and cores of a prede�ned cable will have generic names and identi�ers in the
assembly de�nition. When used in a vehicle, connectors will full�l a speci�c function, so identi�ers for connectors will be derived from UsageNodes;

descriptions will be function speci�c (e.g., “Infotainment USB Port Center Console”) and cores will realize system schematic connections of the

vehicle. Furthermore, the same cable could be used multiple times in the same vehicle for different functions.

Rede�nition of technical properties: Technical properties of an assembly might change in a speci�c usage. E.g., a prede�ned cable (contacted only on

one side) comes in a speci�c length. During the harness assembly it might be cut down to the required length.

Placement & routing of the assembly in the usage: To de�ne the actual usage, e.g., placement of connectors, routing of wire, a.s.o. occurrences are

required. Since an assembly could be used multiple times in different locations and usages in a harness, those occurrences could not be the same
occurrences used in the CompositionSpeci�cation of part master data de�nition.

XML representation

The following XML snippet shows the occurrences of the example in the CompositionSpeci�cation.

5.3.2 Harness & Modules

From a high level perspective, a harness is just a “very complicated” assembly. The two major differences are:

a harness is designed with variance in mind. In most cases it is a 150% de�nition containing either modules for a customer speci�c harness or a set of

prede�ned variants.

It is designed for a very speci�c use case (e.g., a vehicle) and its reuse in the process is very limited, in contrast to an assembly.

Harness Definition

Module

Legend

Component

Harness

Defining
Container

Connector

Connector

Wire

Terminal

Assembly

Subcomponent

Module A

Module B

Module C

Harness

Variant Variant X

Variant Y

FIGURE 58:  Basic Concept of a Harness

The �gure above illustrates the concept of a harness in a very simpli�ed way. A harness de�nition has several layers. The base layer consists of a set of

component instances and their relationships, for example connectors, wires, terminals or even assemblies. The component instances in the base layer are

used to de�ne the function / appearance of the harness (e.g., contacting and routing of wires, placement of components) in all possible variants (150%). The

other layers are used to manage the variance and to achieve a con�gurable product. The concepts (and the names) in these layers sometimes differ slightly

in the various processes. However, from a data structural point of view, those differences are marginal.

For a customer speci�c harness, the next level de�nes Modules. A module represents a handle for a speci�c subset of component instances in a 150%

harness. The strategies for modularization of a harness are manifold and quite process speci�c, but they are always in�uenced by the variant structure and

the logistic concept of the product. However, modules do have in common, that they just represent a set of components that should be controlled individually

in the con�gurable product. In this respect, modules are logistical units rather than real parts. A module itself is normally free of variance and does not

<Component id="id_2001_2">

    <Identification>Assembly-Instance</Identification>

    <Role xsi:type="vec:PartWithSubComponentsRole" id="pwscr_1">

        <PartStructureSpecification>id_2000_0</PartStructureSpecification>

        <SubComponent>id_2001_3 id_2001_4</SubComponent>

    </Role>

    <Part>id_1001_0</Part>

</Component>

<Component id="id_2001_3" xsi:type="vec:PartOccurrence">

    <Identification>A*</Identification>

    <Role ...>

        ...

    </Role>

    <InstanciatedOccurrence>id_2000_2</InstanciatedOccurrence>

    <Part>id_1001_1</Part>

</Component>

<Component id="id_2001_4" xsi:type="vec:PartOccurrence">

    <Identification>B*</Identification>

    <Role ...>

        ...

    </Role>

    <InstanciatedOccurrence>id_2000_3</InstanciatedOccurrence>

    <Part>id_1001_2</Part>

</Component>

http://localhost:8080/specifications/vec/v210/classes/usagenode/
http://localhost:8080/specifications/vec/v210/classes/compositionspecification/
http://localhost:8080/specifications/vec/v210/classes/compositionspecification/


represent a functional subset on its own, in other words, it is just a 10% set of components and not 100%. This means that only the correct combination of

multiple modules creates a functional harness that can be found in a actual vehicle. The harness de�nition itself consists of all modules (150%). For a

speci�c vehicle con�guration, a subset of all modules is picked. The combination of those modules creates a speci�c variant (100%).

Not all harnesses are designed as customer speci�c harnesses. For less complex harnesses (e.g., the doors) or for the sake of a simpler order and

manufacturing logistic, a set of precon�gured harness variants  is often used. Two approaches exist for this:

1. In the �rst approach the variants are de�ned as a set of components (“Variant X” in the �gure, the dashed arrow stands for the references to all

components required for “Variant X”). So they are basically de�ned in the same way as a module, with the difference that each variant represents an

actual harness (100%) by itself.

2. In the second approach, the components are grouped into modules (in this context often named “options”), just as with the customer speci�c harness.
The speci�c harness variants are then de�ned as subsets of the modules / options (“Variant Y” in the �gure).

5.3.2.1 Details

The following �gure shows the basic structure of a harness de�nition in the VEC. It has to be read from left to right.

Harness-Definition : DocumentVersion

Component-A:
PartVersion

Component-B:
PartVersion

COMPONENTS: CompositionSpecification

Part Component A: PartOccurence
....

Part Component B: PartOccurence
...

Module-A:
PartVersion

Module-B:
PartVersion

DescribedPart

Module-A: PartStructureSpecification

DescribedPart

Module-B: PartStructureSpecification

InBillOfMaterial

InBillOfMaterial

MODULES: CompositionSpecification

Module-A-Instance: PartOccurence
ConfigInfo: A+B

Module-B-Instance: PartOccurence
ConfigInfo: A+!B

PartWithSubComponentRole

PartWithSubComponentRole

Part

Part

PartStructureSp...

PartStructureSp...

SubComponent

SubComponent

Harness / Variant:
PartVersionDescribedPart

Harness / Variant:
PartStructureSpecification

InBillOfMaterial

InBillOfMaterial

FIGURE 59:  Basic Concept of a Harness

The harness de�nition starts on the left hand side with the COMPONENTS CompositionSpeci�cation. It contains all component occurrences that are required

for the harness (or its de�nition). If the harness contains components without a speci�c PartVersion, the use of PartUsages is also valid. The illustration

contains only the hierarchical structure of a harness de�nition. A complete de�nition will include a wide variety of additional Speci�cations that allow the

detailed de�nition of the harness based on the occurrences (e.g. TopologySpeci�cation, PlacementSpeci�cation, RoutingSpeci�cation,

ContactingSpeci�cation).

Based on these part occurrences, each module (Module A & Module B) has a PartStructureSpeci�cation (highlighted in yellow), that describes its

PartVersion. This is completely analogous to the representation of assemblies. However, a harness (or a variant) is not created with Module PartVersions but

with PartOccurrences of modules. For a clear structuring of the containments in VEC document the module occurrences (highlighted in orange) are placed in

a second CompositionSpeci�cation, the MODULES in the middle of the illustration. Each module’s PartOccurrence has a PartWithSubComponentsRole, just as

described above to the assembly instancing. However, due to the special nature of modules in a harness de�nition, the PartWithSubComponentsRole does

not reference a cloned set of PartOccurrences, but the same that are used for PartStructureSpeci�cation. All PartOccurrences referenced by the
corresponding PartStructureSpeci�cation as InBillOfMaterial must also be referenced as SubComponent by the PartWithSubComponentsRole. This

supposed redundancy is due to the fact that a module is in principle de�ned by its �rst (and often only) occurrence. Although redundant, it is intentionally

required to �ll both associations (PartStructureSpecification -> PartOccurrence & PartWithSubComponentsRole -> PartOccurrence). This uni�es the

handling of assemblies and modules for reading systems.

Finally (on the right side), the harness (150%) or a speci�c variant (100%) is de�ned as “bill of modules” with a PartStructureSpeci�cation referencing all

module occurrences that belong to the harness.

Even if this represention of a harness in the VEC appears to be somewhat more extensive at the �rst glance than, for example, in the KBL, it does have some

advantages:

1. The VEC has a general concept for a multilevel bill of material with support of variance. The number of levels (components, assemblies, modules,

harness) is arbitrary. It is also possible to create an orthogonal structuring, e.g., for production BOMs vs. logistic BOMs.

2. The PartOccurrence separates context speci�c information (e.g,. variant con�gurations) from part master data. If a harness is reused and a module
has different context information (e.g. different variant con�gurations in different vehicles) then, this is possible without recreating a module.

3. Reusing shared modules in different harnesses is, with slight changes for the reusing context, also supported.

1. Stufenkabelbaum ↩ 

5.4 Coupling

1

Disclaimer: This page or section is currently under review by the community.⚠

http://localhost:8080/specifications/vec/v210/classes/compositionspecification/
http://localhost:8080/specifications/vec/v210/classes/partversion/
http://localhost:8080/specifications/vec/v210/classes/partusage/
http://localhost:8080/specifications/vec/v210/classes/specification/
http://localhost:8080/specifications/vec/v210/classes/topologyspecification/
http://localhost:8080/specifications/vec/v210/classes/placementspecification/
http://localhost:8080/specifications/vec/v210/classes/routingspecification/
http://localhost:8080/specifications/vec/v210/classes/contactingspecification/
http://localhost:8080/specifications/vec/v210/classes/partstructurespecification/
http://localhost:8080/specifications/vec/v210/classes/partversion/
http://localhost:8080/specifications/vec/v210/classes/partoccurrence/
http://localhost:8080/specifications/vec/v210/classes/compositionspecification/
http://localhost:8080/specifications/vec/v210/classes/partoccurrence/
http://localhost:8080/specifications/vec/v210/classes/partwithsubcomponentsrole/
http://localhost:8080/specifications/vec/v210/classes/partwithsubcomponentsrole/
http://localhost:8080/specifications/vec/v210/classes/partoccurrence/
http://localhost:8080/specifications/vec/v210/classes/partstructurespecification/
http://localhost:8080/specifications/vec/v210/classes/partoccurrence/
http://localhost:8080/specifications/vec/v210/classes/partstructurespecification/
http://localhost:8080/specifications/vec/v210/classes/partwithsubcomponentsrole/
http://localhost:8080/specifications/vec/v210/classes/partstructurespecification/
http://localhost:8080/specifications/vec/v210/classes/partoccurrence/


The VEC interprets the term “coupling” to encompass various types of plug-in or detachable connections within the wiring system. This includes the linking

of wiring harnesses with one another, wiring harnesses with E/E components, and E/E components with one another (for example, fuses within fuse
carriers). A distinction must be made between two dimensions: on the one hand, the de�nition in the master data of the components for valid combinations

and the mapping of the different sides (see Cavity Mapping), and on the other hand the de�nition of a coupling in the actual use (see Coupling Speci�cation).

This is indicated in the �gure below on the left hand side for the part master data and on the right hand side for the harness de�nition.

DocumentVersion: PartMaster

ConnectorHousingSpecification: I

PartVersion: I

describedPart

Slot: A

Cavity: 1

DocumentVersion: PartMaster

ConnectorHousingSpecification II

PartVersion: II

describedPart

Slot: X

Cavity: 5

MappingSpecification

Mapping

identificationA = "I"

identificationB = "II"

SlotMapping

identificationA = "A"

identificationB = "B"

CavityMapping

identificationA = "1"

identificationB = "5"

A B

PartOccurrence: II

ConnectorHousingRole

SlotReference

CavityReference

...

PartOccurrence: II

ConnectorHousingRole

SlotReference

CavityReference

...

CouplingPoint

Part Master Data Harness Definition

SlotCoupling

CavityCoupling

MatingPoint

....

FIGURE 60:  Overview Coupling Concepts

5.4.1 Aspects of the Coupling

From a conceptual point of view, the properties of a pluggable connection can be separated into two aspects, mechanical properties like which connectors �t

each other or which cavities are opposite each other and electrical properties like which pin is connected to which terminal / wire. Since those information

can be de�ned in different domains and different point in the development process, the VEC allows the de�nition and exchange of these aspects

independant from each other. This is illustrated by the exemplary process below.

Abstract Wiring
Definition

Harness Connector
Selection 

ECU Interface
Definition

Cavity Assignment
Harness Connector

FIGURE 61:  Exemplary Process for Derivation of Couplings

The following activities are hidden behind the process steps shown.

1. Abstract Wiring De�nition: Electrical connections (“proto wires”) are connected to logical pins of an E/E component (see Wiring). In terms from above,
the de�nition of the eletrical aspect of the coupling in its usage is required.

2. ECU Interface De�nition: The mechanical interface of the E/E component (“the Header”) is assigned. A mapping between electrical pins of the E/E

component and the cavities of the ECU connector is created. This is done in the part master data of the E/E component.

3. Harness Connector Selection: A harness connnector that is compabtible to E/E component connector is selected. This is done taking into account the

mechanical properties of the connector. Normally, other criteria are also taken into account here, such as the properties of the installation space or

compatibility with terminals. However, foundation for this are the mechanical properties of a connector de�ned in den part master data.

4. Cavity Assignment Harness Connector: Based an on a mapping between E/E component connector cavities and harness connector cavities, de�ned
in the part master data, it can be calculated which cavities in the usage are opposite to each other. As it is known which Pin is associated to which E/E

component connector cavity and it is also known which harness terminal / wire is associated to which E/E component pin, the accociation between

harness connector cavity and harness terminal / wire can be derived.

Following the paradigm of the VEC, both the input data and the results of the steps just described can be represented in the model and used independently of

each other. The concepts for each step are described in the sections below (following the order from above).

The content of this page or section can be subject to change at any time. If you �nd any issues or if you have any review comments please drop us

an issue on the PROSTEP JIRA.

This page or section resolves KBLFRM-1212

http://localhost:8080/specifications/vec/v210/component-characteristics/cavity-mapping/
http://localhost:8080/specifications/vec/v210/connectivity/coupling-specification/
http://localhost:8080/specifications/vec/guidelines/elog-layers/wiring/
https://prostep-ivip.atlassian.net/projects/KBLFRM/
https://prostep-ivip.atlassian.net/browse/KBLFRM-1212


5.4.2 Electrical Coupling

The electrical aspects of a coupling in concrete usage are de�ned with a MatingPoint and MatingDetails in the case terminals with multiple
TerminalReceptions (see �gure “Electrical Coupling” below).

FIGURE 62:  Electrical Coupling

There are situations, where logical Connections are realized in physical layer directly by a pluggable “connection” (e.g. two E/E components are conntected

directly to each other, see Direct Connectivity). Therefore, the MatingPoint can create traceability links into the schematic layer.

The CouplingPoint is used to group the information that is associated with a single coupling operation (e.g. all connections that are created with the plugging
of a single connector). If this grouping is already known in the electrologic layer, it is useful (e.g. for traceability reasons) to group the MatingPoints in a

CouplingPoint. However, if this is not know at the time of creation, it is perfectly valid to create an individual CouplingPoint for each mating. Nevertheless,

when these ungrouped matings are assigned to a connector at a later stage, they shall be regrouped und a single CouplingPoint.

5.4.3 E/E Component Interface De�nition

The assignment of electrical pins in an E/E-component to cavities of the mechanical interface is described in detail in the guideline about E/E-components.

5.4.4 Mechanical Compatibility and Mapping of Connectors

Coupling compatibility in the part master data is de�ned with a Mapping within a MappingSpeci�cation. Due to the distributed nature of part master data the
mapping is not de�ned with explicit reference, but by de�ning pairs of keys (e.g. CavityNumber). This is illustrated in the �gure below. As you can see, the

Mapping only requires links the PartVersions. Apart from that, it is self-contained and independant from the part master data de�nition. Therefore, it can be

exchanged idenpendantly without then to embedd all ConnectorHousingSpeci�cations of the related connectors.

FIGURE 63:  De�nition of a Mapping

http://localhost:8080/specifications/vec/v210/classes/matingpoint/
http://localhost:8080/specifications/vec/v210/classes/matingdetail/
http://localhost:8080/specifications/vec/v210/classes/terminalreception/
http://localhost:8080/specifications/vec/v210/classes/connection/
http://localhost:8080/specifications/vec/guidelines/elog-layers/wiring/#direct-connectivity
http://localhost:8080/specifications/vec/v210/classes/matingpoint/
http://localhost:8080/specifications/vec/v210/classes/couplingpoint/
http://localhost:8080/specifications/vec/v210/classes/matingpoint/
http://localhost:8080/specifications/vec/v210/classes/couplingpoint/
http://localhost:8080/specifications/vec/v210/classes/couplingpoint/
http://localhost:8080/specifications/vec/v210/classes/couplingpoint/
http://localhost:8080/specifications/vec/guidelines/ee-components/#basic-structure
http://localhost:8080/specifications/vec/v210/classes/mapping/
http://localhost:8080/specifications/vec/v210/classes/mappingspecification/
http://localhost:8080/specifications/vec/v210/classes/mapping/
http://localhost:8080/specifications/vec/v210/classes/partversion/
http://localhost:8080/specifications/vec/v210/classes/connectorhousingspecification/


The semantic of the mapping is, that it describes a mapping for the ConnectorHousingSpeci�cation “related” to the PartVersions, but what does “related”

mean? Currently there are two PrimaryPartTypes that utilize the ConnectorHousingSpeci�cation, ConnectorHousing and EEComponent.

For a ConnectorHousing “related” is de�ned as the ConnectorHousingSpeci�cation that are referencing the PartVersion as describedPart. Usally this is just
one. For an EEComponent “related” are the ConnectorHousingSpeci�cations that are used to by the HousingComponents of the EEComponent. This can be

as many as there are HousingComponents. To resolve this ambiguity, the Identi�cationA & Identi�cationB relate to the Identi�cation of the

ConnectorHousingSpeci�cation upon which the mapping is de�ned.

These properties (Identi�cationA & Identi�cationB in the Mapping) are optional for backwards compatibility, because they where �rst introduced in VEC 2.1.

In versions before, there was chance to have an ambigious mapping for E/E components. See next section for an explanation.

5.4.4.1 Ambiguity of the Mapping (before V2.1)

The diagram below shows the situation for mappings before VEC V2.1. On the right side it is pretty clear, which slot is adressed SlotMapping.Identi�cationB
= 1, since the PartVersion 6789 is a “ConnectorHousing” and has only related ConnectorHousingSpeci�cation. On the left hand side, this is only the case,

because of the special situation illustrated in the diagram, where the ConnectorHousingSpeci�cation “I” and “II” de�ne different values for Slot.SlotNumber,
which are unique within the scope of the E/E component.

FIGURE 64:  Ambigious Mapping before VEC V2.1

But, in general the SlotNumber is only required “to be unique within a ConnectorHousingSpeci�cation”. So it would be perfectly valid for an E/E component to

use ConnectorHousingSpeci�cations that de�ne Slots with identical SlotNumbers like “A”, “1”, “default” or whatever else the speci�c naming convention of

the process de�nes as appropriate. However, in this case it would not be possible to associate de�ned mapping with the correct

ConnectorHousingSpeci�cation.

Therefore, VEC V2.1 introduced corresponding “IdenticationA” & “IdenticationB” attributes in the Mapping (see diagram below). Despite having the same

SlotNumbers un the right side, the mapping is de�ned unambigiously.

Regardless of their formally optionality, it is strongly recommend to de�ne the identi�cations for the ConnectorHousingSpeci�cations in the

Mapping, for data created with VEC 2.1 and later.


http://localhost:8080/specifications/vec/v210/classes/connectorhousingspecification/
http://localhost:8080/specifications/vec/v210/classes/partversion/
http://localhost:8080/specifications/vec/v210/classes/primaryparttype/
http://localhost:8080/specifications/vec/v210/classes/connectorhousingspecification/
http://localhost:8080/specifications/vec/v210/classes/connectorhousingspecification/
http://localhost:8080/specifications/vec/v210/classes/partversion/
http://localhost:8080/specifications/vec/v210/classes/connectorhousingspecification/
http://localhost:8080/specifications/vec/v210/classes/housingcomponent/
http://localhost:8080/specifications/vec/v210/classes/housingcomponent/
http://localhost:8080/specifications/vec/v210/classes/connectorhousingspecification/
http://localhost:8080/specifications/vec/v210/classes/mapping/
http://localhost:8080/specifications/vec/v210/classes/partversion/
http://localhost:8080/specifications/vec/v210/classes/connectorhousingspecification/
http://localhost:8080/specifications/vec/v210/classes/connectorhousingspecification/
http://localhost:8080/specifications/vec/v210/classes/connectorhousingspecification/
http://localhost:8080/specifications/vec/v210/classes/slot/
http://localhost:8080/specifications/vec/v210/classes/connectorhousingspecification/
http://localhost:8080/specifications/vec/v210/classes/mapping/
http://localhost:8080/specifications/vec/v210/classes/connectorhousingspecification/
http://localhost:8080/specifications/vec/v210/classes/mapping/


FIGURE 65:  Unambigious Mapping for VEC V2.1 and later

5.4.5 Mechanical Coupling

As described in section Aspects of the Coupling the mechanical coupling in a speci�c usage can be derived from the part master data and the Mapping. The

result of that process is stored in the “mechanical” part of the CouplingPoint. However, this derivation process is not necessarily required. As always, the VEC

makes no assumption about the creation process of a speci�c information item, e.g. if the process requires a manual de�nition in the usage, this would be

perfectly valid as well and the result of the process would stored in the CouplingSpeci�cation.

It would also be imaginable to have a process where the de�nition of the coupling for a bordnet would happen after the development of all involved

harnesses. In this case, the CouplingSpeci�cation might be created in its own DocumentVersion.

The �gure below contains an example of a completely de�ned CouplingPoint.

FIGURE 66:  Complete Coupling Point

6 Description of Components Types
This section deals with the peculiarities of speci�c types of components. The structure of the speci�cation is mainly organized according to the different

layers and abstraction levels in the model. As a result, the aspects for a holistic view of a particular component are divided into the areas General Component
Data, Component Characteristics and Instances of Components in the speci�cation. The implementation guidelines in this section provide an orthogonal

view on this, trying to cover all aspects (master data, instancing etc.) for a speci�c component type.

For a general description of master data de�nition and instancing concepts of components, see Component De�nition & Instantiation.

6.1 Wires

This Implementation Guideline covers the various aspects of a correct wire representation in the VEC for different scenarios and variants of wires. It covers
both multi cores and single cores.

The VEC contains model elements for the representation of wires which would not be strictly necessary for the exclusive representation of single core wires.

However, single core wire elements with the same speci�cation can occur in both, single and multi-core wires. In order to achieve a consistent representation

of all cases in the model and in order to allow the reuse of data elements, a uniform modelling approach was chosen for single and multicore wires. At the

�rst glance, this may seem unnecessarily complicated in the case of single core wires, but it simpli�es the mapping of wires in the VEC on the long run, when

all kinds of wires and not only single-cores have to be supported.

For backwards compatibility it is allowed to omit the Identi�cation-attributes in the Mapping, but this is only permitted in cases where the mapping

still can be associated unambigiously, even without the Identi�cations in the Mapping-class. This is normally the case for regular

ConnectorHousing, which only a single related ConnectorHousingSpeci�cation and EEComponents that satisfy the requirement of unique

SlotNumbers within all ConnectorHousingSpeci�cations related to EECompionent (as illustrated in �gure “Ambigious Mapping before VEC V2.1”).

To simplify the situation for future implementations, it is highly recommended to de�ne the Identi�cation-attributes in VEC V2.1 and later, even if

they are not mandatory.

The only solution to de�ne an unambigious mapping for situations like the one illustrated in �gure “Unambigious Mapping for VEC V2.1 and later”

in VEC versions before 2.1, is to de�ne CustomPropertys for Identi�cationA & B on the extendable Mapping-class.



http://localhost:8080/specifications/vec/v210/classes/mapping/
http://localhost:8080/specifications/vec/v210/classes/couplingpoint/
http://localhost:8080/specifications/vec/v210/classes/couplingspecification/
http://localhost:8080/specifications/vec/v210/classes/couplingspecification/
http://localhost:8080/specifications/vec/v210/classes/documentversion/
http://localhost:8080/specifications/vec/v210/classes/couplingpoint/
http://localhost:8080/specifications/vec/v210/general-component-data/
http://localhost:8080/specifications/vec/v210/general-component-data/
http://localhost:8080/specifications/vec/v210/component-characteristics/
http://localhost:8080/specifications/vec/v210/instances-of-components/
http://localhost:8080/specifications/vec/guidelines/product-definition/component-description/
http://localhost:8080/specifications/vec/v210/classes/mapping/
http://localhost:8080/specifications/vec/v210/classes/connectorhousingspecification/
http://localhost:8080/specifications/vec/v210/classes/connectorhousingspecification/
http://localhost:8080/specifications/vec/v210/classes/customproperty/
http://localhost:8080/specifications/vec/v210/classes/mapping/


6.1.1 Specifying the Elements of a Wire

In the world of the VEC, a wire is a hierarchical structure of wire elements. A wire element can be any node in the hierarchy that has to be addressed
individually for the de�nition of speci�c properties. A wire element can be manifested either by physical material (e.g. a core, an insulation, a shield) or by the

logical necessity for the de�nition of certain product properties during the production process (e.g. a grouping for twisted pairs).

The properties of wire elements are de�ned with a WireElementSpeci�cation (see the �gure below).

FIGURE 67:  Wire Element Speci�cation

The WireElementSpeci�cation is a generic node in the hierarchical structure of a wire. The hierarchy represents the real structure of wire from the outside to

inside. For example, if an insulation is placed around two cores, the cores are sub elements of the insulation. Subordinated elements in the structure are

de�ned by referencing subWireElementSpeci�cations. The actual technical properties of a wire element are de�ned by referencing a corresponding auxiliary

speci�cations. For example (see the Diagram Wire in the recommendation for a complete list):

InsulationSpeci�cation if the wire element has insulation properties, or
ConductorSpeci�cation if the wire element has conducting properties.

In reality, a speci�ed wire element can be used in different contexts. For example, a white single core can be used as individual single core wire or as part of

several different multi core wires. It can even be used multiple times as part of the same multi core (compare CAT7 twisted pair cables that might contain up

to 4 similar white cores). To represent this fact, the WireElementSpeci�cation itself is also designed to be reusable.

6.1.2 From the individual Elements to a whole Wire

From a part master data perspective, the WireElementSpeci�cation is su�cient to describe a wire with all its aspects, when navigating from the root wire

element to its leaves. However, the ability to reuse WireElementSpeci�cations comes with draw back:

Referencing a WireElementSpeci�cation does not unambiguously de�ne the context of its usage.

The following �gure shall illustrate this. The red lines are hypothetical associations for the demonstration of the problem. In the VEC those associations do

not exist, because of the described problem the actual model is different.

When navigating from a part master data perspective (e.g. PartVersion A → Composite-Wire B → White-Core) the context is unambiguously de�ned by the

navigation path. However, when referencing such wire element from somewhere else in the model, indicated with the RoutedWire rectangle, the context is

not de�ned unambiguously. It is not clear to which white core the association from the RoutedWire refers to, indicated by the red lines.

??? White-Core : WireElementSpecification

??? Composite-Wire A : WireElementSpecification

A : PartVersion

B : PartVersion

??? Composite-Wire B : WireElementSpecification

C : PartVersion

RoutedWire

1

???

???

FIGURE 68:  Ambigious Context Problem

The auxiliary speci�cations can be shared between different WireElementSpeci�cation. For example, in the real world all FLRY wires with a speci�c

cross section area have the same properties for the core. This can (not a must) be expressed in the VEC by sharing the same CoreSpeci�cation.


http://localhost:8080/specifications/vec/v210/classes/wireelementspecification/
http://localhost:8080/specifications/vec/v210/classes/wireelementspecification/
http://localhost:8080/specifications/vec/v210/component-characteristics/wire/
http://localhost:8080/specifications/vec/v210/classes/insulationspecification/
http://localhost:8080/specifications/vec/v210/classes/conductorspecification/
http://localhost:8080/specifications/vec/v210/classes/wireelementspecification/
http://localhost:8080/specifications/vec/v210/classes/wireelementspecification/
http://localhost:8080/specifications/vec/v210/classes/wireelementspecification/
http://localhost:8080/specifications/vec/v210/classes/wireelementspecification/
http://localhost:8080/specifications/vec/v210/classes/wireelementspecification/
http://localhost:8080/specifications/vec/v210/classes/corespecification/


To solve this dilemma, the VEC introduced the WireSpeci�cation and the WireElement. The WireSpeci�cation is the PartOrUsageRelatedSpeci�cation of a

wire and the mandatory root of any wire (element) that can be used as an individual component. It references the root WireElement and the root

WireElementSpeci�cation.

The WireElement is the context speci�c handle of a WireElementSpeci�cation in a speci�c WireSpeci�cation (primarily needed for multi cores, but due to a

consistent modelling approach also mandatory for single cores). The WireElements are used as a target for references.

The redundant replication of the wire hierarchy within the WireElements is necessary, because without this hierarchy wires with multiple occurrences of the

same WireElementSpeci�cation within the wire could not be represented consistently (see KBLFRM-949 ).

6.1.3 De�nition of a Single Core

FIGURE 69:  Single Core Speci�cation

The �gure above illustrates the representation of a single core wire in the VEC. The WireSpeci�cation is the PartOrUsageRelatedSpeci�cation describing a

PartVersion. Each WireSpeci�cation has a single root WireElementSpeci�cation that de�nes the actual properties and the structure of the wire, and a single

root WireElement that serves as the context speci�c handle of the WireElementSpeci�cation (see above).

In theory, there are two possible representations for single cores in the VEC (see the �gure below). A minimal representation, where the single core is

represented by one wire element with conducting and insulating properties at the same time, and a more extensive one, where the single core is represented

by two hierarchical wire elements, one for the insulation and one for the actual core.

FIGURE 70:  Minimal Representation vs. non-compliant Representation

6.1.4 De�nition of a Multicore Wire

The �gure on the right illustrates a “simple” multicore wire, that will serve as an example for the following sections. It consists of two single cores of different

colouring that form a twisted pair: “A”, a green one and “B” a blue one. Around the twisted pair is a shielding (braiding or foil) and an outer insulation (sheath).

The �gure below displays the structural representation of the example in the terms of the VEC. On the left side is the WireSpeci�cation with its contained

WireElement.s To emphasis the hierarchical containment of the WireElements, which can also be found in the XML structure, they are represented with

nested boxes. On the right side are the WireElementSpeci�cation. Corresponding WireElements and WireElementSpeci�cations are highlighted in the same

Every WireElementSpeci�cation referenced transitively by the root WireElementSpeci�cation of a WireSpeci�cation requires a corresponding

WireElement in the same WireSpeci�cation. Care must be taken to ensure that the hierarchies de�ned by the WireElement and the

WireElementSpeci�cation are consistent with each other.



It is recommended for single cores to use always the minimal representation of the WireElementSpeci�cation. Otherwise the number of objects

and structures in the model are in�ated without additional information or bene�ts.


http://localhost:8080/specifications/vec/v210/classes/wirespecification/
http://localhost:8080/specifications/vec/v210/classes/wireelement/
http://localhost:8080/specifications/vec/v210/classes/wirespecification/
http://localhost:8080/specifications/vec/v210/classes/partorusagerelatedspecification/
http://localhost:8080/specifications/vec/v210/classes/wireelement/
http://localhost:8080/specifications/vec/v210/classes/wireelementspecification/
http://localhost:8080/specifications/vec/v210/classes/wireelement/
http://localhost:8080/specifications/vec/v210/classes/wireelementspecification/
http://localhost:8080/specifications/vec/v210/classes/wirespecification/
http://localhost:8080/specifications/vec/v210/classes/wireelement/
http://localhost:8080/specifications/vec/v210/classes/wireelement/
http://localhost:8080/specifications/vec/v210/classes/wireelementspecification/
https://prostep-ivip.atlassian.net/browse/KBLFRM-949
http://localhost:8080/specifications/vec/v210/classes/wirespecification/
http://localhost:8080/specifications/vec/v210/classes/partorusagerelatedspecification/
http://localhost:8080/specifications/vec/v210/classes/partversion/
http://localhost:8080/specifications/vec/v210/classes/wirespecification/
http://localhost:8080/specifications/vec/v210/classes/wireelementspecification/
http://localhost:8080/specifications/vec/v210/classes/wireelement/
http://localhost:8080/specifications/vec/v210/classes/wireelementspecification/
http://localhost:8080/specifications/vec/v210/classes/wirespecification/
http://localhost:8080/specifications/vec/v210/classes/wireelement/
http://localhost:8080/specifications/vec/v210/classes/wireelement/
http://localhost:8080/specifications/vec/v210/classes/wireelementspecification/
http://localhost:8080/specifications/vec/v210/classes/wireelement/
http://localhost:8080/specifications/vec/v210/classes/wireelementspecification/
http://localhost:8080/specifications/vec/v210/classes/wireelementspecification/
http://localhost:8080/specifications/vec/v210/classes/wireelementspecification/
http://localhost:8080/specifications/vec/v210/classes/wirespecification/
http://localhost:8080/specifications/vec/v210/classes/wireelement/
http://localhost:8080/specifications/vec/v210/classes/wirespecification/
http://localhost:8080/specifications/vec/v210/classes/wireelement/
http://localhost:8080/specifications/vec/v210/classes/wireelementspecification/
http://localhost:8080/specifications/vec/v210/classes/wireelementspecification/


BAA

Insulation

Shield

Twisted-
Pair

Insulation

Core

FIGURE 71:  Multicore Example Illustration

Cutaway diagram of a shielded multicore cable with four cores each with three individual
conductors

Open Electrical, CC BY-SA 3.0 https://creativecommons.org/licenses/by-sa/3.0, via Wikimedia Commons

colours. The technical properties of the WireElementSpeci�cation are de�ned

in the referenced auxiliary speci�cations.

FIGURE 72:  Multicore Speci�cation

Notable things in this example:

1. The speci�cation of the smallest elements of the multicore, the single cores (one outlined in red), is similar to the speci�cation of an individual single

core. It could even be the same WireElementSpeci�cation.

2. Since the only difference between Core “A” & “B” is the different insulation colouring, they share the same CoreSpeci�cation.

3. The different layers around the two cores (twisting, shielding, insulation) are represented by individual WireElement / WireElementSpeci�cation. This is

in contrast to the single core where insulation and conductor are represented by a single WireElement / WireElementSpeci�cation.

The last point requires a somewhat more detailed explanation. Why does the
multicore representation differ in this aspect from the single core

representation?

As discussed earlier: for single cores a minimized representation shall be

used, because otherwise the model gets unnecessarily bloated. However,

multicores can be inherently complex (see “Cutaway Diagram…” on the left).

Using a minimized representation in multicores for others than the smallest
elements ( the single cores) would create wide open space for ambiguous

interpretations.

For example, having a WireElementSpeci�cation with a ShieldSpeci�cation

and an InsulationSpeci�cation: What is the order of layering? Which one

comes �rst? Another example, a foil shield in combination with a braiding and

an insulation. A WireElementSpeci�cation could only carry one
ConductorSpeci�cation, so one of the two shieldings get individual wire

element, whereas the other one is combined with the insulation. Isn’t that

inconsistent? And these are just two problematic cases and many more are

conceivable. To avoid this confusion, the following applies for multicores:

Another reason for not using a minimized representations for higher level multicore wire elements is, that most manufacturing processes require the

individual identi�cation of the different elements (e.g. shield an insulation) and those are often processed in different manufacturing steps.

6.1.4.1 XML Listing

The following is a XML listing of the VEC representation of the multicore example illustration. The listing is a schema valid VEC. However, for the sake of the

simplicity of the example it just contains the most fundamental properties. The Identification values for the Speci�cations are chosen in a way to make
the example more readable. In a productive VEC the Identification-values would be de�ned in an appropriate way for the creating process.

In contrast to single cores, WireElementSpeci�cations of higher levels (not

single cores used in a multicore) shall only represent one Character /

Element / Property in the multicore. WireElementSpeci�cation that have a grouping, conducting, insulating or similar character at the same time

are not permitted.



https://creativecommons.org/licenses/by-sa/3.0
http://localhost:8080/specifications/vec/v210/classes/wireelementspecification/
http://localhost:8080/specifications/vec/v210/classes/wireelementspecification/
http://localhost:8080/specifications/vec/v210/classes/corespecification/
http://localhost:8080/specifications/vec/v210/classes/wireelement/
http://localhost:8080/specifications/vec/v210/classes/wireelementspecification/
http://localhost:8080/specifications/vec/v210/classes/wireelement/
http://localhost:8080/specifications/vec/v210/classes/wireelementspecification/
http://localhost:8080/specifications/vec/v210/classes/wireelementspecification/
http://localhost:8080/specifications/vec/v210/classes/shieldspecification/
http://localhost:8080/specifications/vec/v210/classes/insulationspecification/
http://localhost:8080/specifications/vec/v210/classes/wireelementspecification/
http://localhost:8080/specifications/vec/v210/classes/conductorspecification/
http://localhost:8080/specifications/vec/v210/classes/specification/
http://localhost:8080/specifications/vec/v210/classes/wireelementspecification/
http://localhost:8080/specifications/vec/v210/classes/wireelementspecification/


<?xml version="1.0" encoding="UTF-8"?>

<vec:VecContent xmlns:vec="http://www.prostep.org/ecad-if/2011/vec"

    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" id="id_0001">

    <VecVersion>1.2.0</VecVersion>

    <DocumentVersion id="id_1">

        <CompanyName>ACME Inc.</CompanyName>

        <DocumentNumber>0815</DocumentNumber>

        <DocumentType>PartMaster</DocumentType>

        <DocumentVersion>a</DocumentVersion>  

        <!-- Auxiliary specifications for the multicore -->
        <Specification id="id_1_1" xsi:type="vec:InsulationSpecification">

            <Identification>Orange</Identification>

            <BaseColor id="id_1_1_0001">

                <Key>#FF8000</Key>

                <ReferenceSystem>RGB</ReferenceSystem>

            </BaseColor>

        </Specification>

        <Specification id="id_1_2" xsi:type="vec:ShieldSpecification">

            <Identification>Shielding</Identification>

            <CrossSectionArea id="id_1_2_0001">

                <UnitComponent>id_unit_mm2</UnitComponent>

                <ValueComponent>1.5</ValueComponent>

            </CrossSectionArea>

        </Specification>

        <Specification id="id_1_3" xsi:type="vec:WireGroupSpecification">

            <Identification>Twisting</Identification>

            <GroupType>Twisted</GroupType>

            <LengthOfTwist id="id_1_3_0001">

                <UnitComponent>id_unit_mm</UnitComponent>

                <ValueComponent>40</ValueComponent>

            </LengthOfTwist>

        </Specification>

        <!-- Auxiliary specifications for the two single cores -->
        <Specification id="id_2_1" xsi:type="vec:CoreSpecification">

            <Identification>Core</Identification>

            <CrossSectionArea id="id_2_1_0001">

                <UnitComponent>id_unit_mm2</UnitComponent>

                <ValueComponent>0.35</ValueComponent>

            </CrossSectionArea>

        </Specification>

        <Specification id="id_2_2" xsi:type="vec:InsulationSpecification">

            <Identification>Green</Identification>

            <BaseColor id="id_2_2_0001">

                <Key>#00CC00</Key>

                <ReferenceSystem>RGB</ReferenceSystem>

            </BaseColor>

        </Specification>

        <Specification id="id_3_2" xsi:type="vec:InsulationSpecification">

            <Identification>Blue</Identification>

            <BaseColor id="id_3_2_0001">

                <Key>#0050EF</Key>

                <ReferenceSystem>RGB</ReferenceSystem>

            </BaseColor>

        </Specification>

        <!-- Buttom Up definition of the WireElementSpecification (from single cores to Multicore) -->
        <Specification id="id_4_1" xsi:type="vec:WireElementSpecification">

            <Identification>A</Identification>

            <ConductorSpecification>id_2_1</ConductorSpecification>

            <InsulationSpecification>id_2_2</InsulationSpecification>

        </Specification>

        <Specification id="id_4_2" xsi:type="vec:WireElementSpecification">

            <Identification>B</Identification>

            <ConductorSpecification>id_2_1</ConductorSpecification>

            <InsulationSpecification>id_3_2</InsulationSpecification>

        </Specification>

        <Specification id="id_4_3" xsi:type="vec:WireElementSpecification">

            <Identification>Twisted-Pair</Identification>

            <SubWireElementSpecification>id_4_1 id_4_2</SubWireElementSpecification>

            <WireGroupSpecification>id_1_3</WireGroupSpecification>            

        </Specification>

        <Specification id="id_4_4" xsi:type="vec:WireElementSpecification">

            <Identification>Shield</Identification>

            <ConductorSpecification>id_1_2</ConductorSpecification>

            <SubWireElementSpecification>id_4_3</SubWireElementSpecification>            

        </Specification>

        <Specification id="id_4_5" xsi:type="vec:WireElementSpecification">

            <Identification>Insulation</Identification>

            <InsulationSpecification>id_1_1</InsulationSpecification>

            <SubWireElementSpecification>id_4_4</SubWireElementSpecification>            

        </Specification>

        <!-- WireSpecification with WireElemnts -->
        <Specification id="id_5_0" xsi:type="vec:WireSpecification">

            <Identification>Multi-Core WireSpecification</Identification>

            <DescribedPart>id_2</DescribedPart>

            <WireElementSpecification>id_4_5</WireElementSpecification>

            <WireElement id="id_5_1">

                <Identification>Root</Identification>

                <WireElementSpecification>id_4_5</WireElementSpecification>

                <SubWireElement id="id_5_2">

                    <Identification>Insulation</Identification>

                    <WireElementSpecification>id_4_5</WireElementSpecification>

                    <SubWireElement id="id_5_3">



Ribbon cables (grey stripped, and rainbow with IDC
connector)

Heron 21:16, 22 Nov 2004 (UTC), CC BY-SA 3.0

http://creativecommons.org/licenses/by-sa/3.0/, via Wikimedia

Commons

6.1.5 Special Cases of Wires

6.1.5.1 Ribbon Cables

The �gure on the left shows two variants of ribbon cables. As can be easily seen, in such a cable the same cores are
present several times on the same level of the hierarchy. This is one of the cases referred to in “From the individual

Elements to a whole Wire” that require the de�nition of individual WireElements where the WireElementSpeci�cation

alone would not be su�cient.

The �gure below displays the structural representation of the example in terms of the VEC.

FIGURE 73:  Speci�cation of a Ribbon Cable in the VEC

The illustration represents a �ve-core ribbon cable. On the left is the WireSpeci�cation with its contained WireElement, on the right side the
WireElementSpeci�cations. The ribbon cable consists of one red core and 4 identical grey cores. Therefore there are only two WireElementSpeci�cations for

the cores, one for the red core and one for all grey cores. To de�ne explicitly that the ribbon cable consists of 5 cores, the Root-WireElementSpeci�cation

references the single Grey-Core four times as subWireElementSpeci�cation.

In the WireSpeci�cation there are individual WireElements for each core (Core: 1, 2, 3, 4, 5). Since the VEC does not de�ne the geometric arrangement of

subWireElements within a WireElement the four grey cores have to be identi�ed with their respective identi�cation (e.g. 2 - 5).

6.1.5.2 CAT7 - S/FTP

The �gures on the right side illustrate cases of more complex mulitcore wires. For example Category 7 Ethernet cables according to ISO/IEC 11801 2nd Ed.

(2002). These consist of a multilayer structure of conductors with insulation, twisting and different shielding.

Remarkable is that each pair of cores consists of a primary coloured core and a primary/white coloured core (e.g. blue and blue/white). However, in reality

the primary colour on the primary/white core is often omitted, as it is unambiguously identi�able due to its twisting & shielding together with the primary

coloured core in the cable. So the blue/white core is often actually just a plain white core. Therefore, such a multicore cable can consist of four primary

                        <Identification>Shield</Identification>

                        <WireElementSpecification>id_4_4</WireElementSpecification>

                        <SubWireElement id="id_5_4">

                            <Identification>Twisted-Pair</Identification>

                            <WireElementSpecification>id_4_3</WireElementSpecification>

                            <SubWireElement id="id_5_5">

                                <Identification>A</Identification>

                                <WireElementSpecification>id_4_1</WireElementSpecification>

                            </SubWireElement>

                            <SubWireElement id="id_5_6">

                                <Identification>B</Identification>

                                <WireElementSpecification>id_4_2</WireElementSpecification>

                            </SubWireElement>                            

                        </SubWireElement>

                    </SubWireElement>

                </SubWireElement>

            </WireElement>

        </Specification>

    </DocumentVersion>

    <PartVersion id="id_2">

        <CompanyName>ACME Inc.</CompanyName>

        <PartNumber>4711</PartNumber>

        <PartVersion>a</PartVersion>

        <PrimaryPartType>Wire</PrimaryPartType>

    </PartVersion>

    <Unit id="id_unit_mm2" xsi:type="vec:SIUnit">

        <Exponent>2</Exponent>

        <SiUnitName>Metre</SiUnitName>

        <SiPrefix>Milli</SiPrefix>        

    </Unit>

    <Unit id="id_unit_mm" xsi:type="vec:SIUnit">

        <SiUnitName>Metre</SiUnitName>

        <SiPrefix>Milli</SiPrefix>        

    </Unit>

</vec:VecContent>

http://creativecommons.org/licenses/by-sa/3.0/
http://localhost:8080/specifications/vec/v210/classes/wireelement/
http://localhost:8080/specifications/vec/v210/classes/wireelementspecification/
http://localhost:8080/specifications/vec/v210/classes/wirespecification/
http://localhost:8080/specifications/vec/v210/classes/wireelement/
http://localhost:8080/specifications/vec/v210/classes/wireelementspecification/
http://localhost:8080/specifications/vec/v210/classes/wireelementspecification/
http://localhost:8080/specifications/vec/v210/classes/wireelementspecification/
http://localhost:8080/specifications/vec/v210/classes/wirespecification/
http://localhost:8080/specifications/vec/v210/classes/wireelement/


cable shield

sheath

conductor

insulation

pair

pair shield

S/STP

Shielded STP cable
Original: Uwe Schwöbel (de:Datei:SSTP-Kabel.png)English

translation: Deelkar (en:File:S-STP-cable.png)Vector conversion:

Svgalbertian, GFDL http://www.gnu.org/copyleft/fdl.html, via

Wikimedia Commons

S/FTP CAT 7
Ru wiki, Public domain, via Wikimedia Commons

coloured cores and 4 identical white coloured cores.

The �gure below displays the structural representation of the example in terms of the VEC. In order to achieve a

rudimentary clear representation, the auxiliary speci�cations for the WireElementSpeci�cation have been omitted. For
the same reason, the twisted-pairs 3 & 4 have omitted as well.

FIGURE 74:  Speci�cation of a CAT7 S/FTP Cable in the VEC

Again, on the left side is the WireSpeci�cation with its contained WireElement, on the right side the WireElementSpeci�cations. It is worth noting that the

white cores are represented by a single WireElementSpeci�cation, whereas each is represented by an individual WireElements.

6.1.6 WireLength, WireEnds and Cutting & Stripping (especially for multi cores)

The VEC always allowed the de�nition of speci�c WireLength values for the individual WireElementReferences of a wire. However, this does not de�ne how

the WireElementReferences relate to each other, i.e. what the displacement of each is, since the cutting and stripping of a multi-core does not necessarily

has to be symmetric. With VEC 2.1 concepts for this have been introduced and this section of this implementation guideline gives a detailed explanation of

their usage. The complete section is based on the �gure “WireLength, WireEnds and Cutting & Stripping” below.

Disclaimer: This page or section is currently under review by the community.

The content of this page or section can be subject to change at any time. If you �nd any issues or if you have any review comments please drop us

an issue on the PROSTEP JIRA.

This page or section resolves KBLFRM-1214

⚠

This section applies primarily to VEC 2.1 and later. The attributes cutBackLength & strippingLength in the WireEnd, required to create a detailed

de�nition of the different lengths at the end of a wire and the displacement of the WireElements to each other, were �rst introduced with version

2.1.



http://www.gnu.org/copyleft/fdl.html
http://localhost:8080/specifications/vec/v210/classes/wireelementspecification/
http://localhost:8080/specifications/vec/v210/classes/wirespecification/
http://localhost:8080/specifications/vec/v210/classes/wireelement/
http://localhost:8080/specifications/vec/v210/classes/wireelementspecification/
http://localhost:8080/specifications/vec/v210/classes/wireelementspecification/
http://localhost:8080/specifications/vec/v210/classes/wireelement/
http://localhost:8080/specifications/vec/v210/classes/wirelength/
http://localhost:8080/specifications/vec/v210/classes/wireelementreference/
http://localhost:8080/specifications/vec/v210/classes/wireelementreference/
https://prostep-ivip.atlassian.net/projects/KBLFRM/
https://prostep-ivip.atlassian.net/browse/KBLFRM-1214
http://localhost:8080/specifications/vec/v210/classes/wireend/
http://localhost:8080/specifications/vec/v210/classes/wireelement/


Insulation - INSULATION

Shield - SHIELD

Single Core - CORE1

Single Core - CORE2

Single Core - CORE3

INSULATION.WireLength

WireLength[type='x'] (e.g. Production)

WireLength[type='y'] (e.g. DMU)WireLength ΔA WireLength ΔB

SHIELD.WireLength

CORE3.WireLength

CORE1.WireLength

PositionOnWire = 0.0 PositionOnWire = 1.0

d

a

a=CORE3.WireEnd[1.0].cutBackLength

b

b=CORE3.WireEnd[0.0].strippingLength

c

c=CORE3.WireEnd[0.0].strippingLength

d=SHIELD.WireEnd[0.0].cutBackLength
e

e=INSULATION.WireEnd[0.0].strippingLength

Different WireLength and their Correlation

Cutting & Stripping of WireEnds

Sectional View

WireLength, WireEnds and Cutting & Stripping

On the right hand side of the �gure is a sectional view of the multi-core that should serve as an example throughout this explanation. There are also names

(SHIELD, INSULATION, CORE1, …) de�ned for the WireElementReferences which will be used in the following to reference those elements in the �gure. On the

left hand side are two illustrations of longitudinal cuts through the same multi-core. The upper one shows the multi-core after it has been cut to its length

“overall length”, the lower one is after cutting and stripping of the individual wire elements. See the “S/FTP CAT7” picture in the previous section for a “real

world” example.

The DMU length (upper illustration WireLength[type=“y”]) is often calculated from the sum of all length values of all TopologySegments through which the

wire is routed. This is the length between the SegmentConnectionPoints of the corresponding connectors. During production (upper illustration

WireLength[type=“x”]), additional length is required (e.g. in the connectors indicated as ΔA & ΔB or for other length discrepancies like the position in a curved

segment, not illustrated in the picture). However, the VEC is not keeping track of the individual contributions of the different factors to the overall Δ (there is

no de�nition of ΔA or ΔB in the VEC).

In the case of a multi core, each WireElementReference can have an individual length (see INSULATION.WireLength, SHIELD.WireLength,

CORE1.WireLength,… in the lower left area of the �gure). This information alone lacks a de�nition of the displacement of the WireElementReferences to each

other. This is su�cient for some use cases (e.g. weight calculation), but it can not serve as a “product de�nition” for the stripped multi-core. To fully de�ne

the situation illustrated above, the attributes of the WireEnd, especially CutBackLength & StrippingLength, are required.

The PositionOnWire-Attributes in the WireEnds de�ne an order on the WireEnds of a WireElementReference. The values “0.0” and “1.0” are reserved for the

two genuine ends of the wire. The values between are used for WireEnds between them (e.g. Insulation Displacement Connectors abbr. IDC). These are not
considered in detail in this example, as they are rather unlikely in the case of such a multicore.

The consequences of this can be seen in the illustration. The reference for the de�nition on the left and right hand side is the overall length of the wire. On the

right side the CORE3 (yellow) is cut back by the length “a” and then stripped from its insulation with the length “b”. On the left side, the same core is not cut

back at all, but stripped with the length c. Since CORE3 is a “single-core wire element” (no sub-wire elements, see de�nition above) it de�nes per WireEnd a

CutBackLength (cutting of the core & the insulation) and a StrippingLength (stripping the insulation from the remaining core).

The SHIELD on the left hand side only de�nes a CutBackLength=“d” since it is a wire element without insulation (see how to represent a multi-core in the

previous sections). Consequently the INSULATION does not de�ne a CutBackLength, as there is no conductor to cut and the sub wire elements carry their

own de�nitions. The length “e” is the StrippingLength of the INSULATION.

6.2 Connectors

The following de�nitions apply to the WireEnd (see class documentation):

For a multi-core it is de�ned, that all WireEnds with the same PositionOnWire are on the same side of the multi-core (in the illustration 0.0 on

the left side and 1.0 on the right side).

The CutBackLength of a WireEnd is de�ned relative to the outermost WireElementReference of the WireRole (INSULATION in our case).

The StrippingLength is de�ned relative to the WireEnd, whose position is de�ned by the CutBackLength (see previous bullet point).



Remarks:

1. This de�nition of the cutting & stripping is independent from any speci�c wire length type.

2. This is a de�nition of the �nal result of a “cut & strip” process, it does not imply any order or steps how to achieve this result.



http://localhost:8080/specifications/vec/v210/classes/wireelementreference/
http://localhost:8080/specifications/vec/v210/classes/topologysegment/
http://localhost:8080/specifications/vec/v210/classes/segmentconnectionpoint/
http://localhost:8080/specifications/vec/v210/classes/wireelementreference/
http://localhost:8080/specifications/vec/v210/classes/wireelementreference/
http://localhost:8080/specifications/vec/v210/classes/wireend/
http://localhost:8080/specifications/vec/v210/classes/wireend/
http://localhost:8080/specifications/vec/v210/classes/wireend/
http://localhost:8080/specifications/vec/v210/classes/wireelementreference/
http://localhost:8080/specifications/vec/v210/classes/wireend/
http://localhost:8080/specifications/vec/v210/classes/wireend/
http://localhost:8080/specifications/vec/v210/classes/wireend/
http://localhost:8080/specifications/vec/v210/classes/wireend/
http://localhost:8080/specifications/vec/v210/classes/wireend/
http://localhost:8080/specifications/vec/v210/classes/wireelementreference/
http://localhost:8080/specifications/vec/v210/classes/wirerole/
http://localhost:8080/specifications/vec/v210/classes/wireend/


6.2.1 Modular Connector

6.2.1.1 Component Description

FIGURE 75:  Modular Connector

This tutorial illustrates the de�nition / description of modular connectors. A modular connector is a connector that can be recursively assembled, so that

certain �elds can �tted with different other parts.

In the displayed example the PartVersion “4711” is a modular connector. The ConnectorHousingSpeci�cation de�nes a regular Slot “A” with a number of

cavities and a ModularSlot “B”. This ModularSlot is compatible to two different inserts (de�ned by individual ConnectorHousingSpeci�cations). The two

PartVersion “4712” & “4713” de�ne these allow inserts.

The referencing for the allowedInserts is established to a PartVersion and not to ConnectorHousingSpeci�cation to support the distribution of part master

data in individual �les.

6.2.1.2 Instancing

FIGURE 76:  Instanciating Modular Connectors

The diagram shows the instantiation of modular connector (previous example). On the left hand side of the diagram the component description of the

modular connector is shown (similar to the previous example). On the right hand side the instancing of such a modular connector is shown.

http://localhost:8080/specifications/vec/v210/classes/partversion/
http://localhost:8080/specifications/vec/v210/classes/connectorhousingspecification/
http://localhost:8080/specifications/vec/v210/classes/slot/
http://localhost:8080/specifications/vec/v210/classes/modularslot/
http://localhost:8080/specifications/vec/v210/classes/connectorhousingspecification/
http://localhost:8080/specifications/vec/v210/classes/partversion/
http://localhost:8080/specifications/vec/v210/classes/partversion/
http://localhost:8080/specifications/vec/v210/classes/connectorhousingspecification/


Both parts of the modular connector (the housing and the insert) have their own PartOccurrence. The ModularSlotReference de�nes which inserts are

actually used in the speci�c context and references their ConnectorHousingRoles to name the concrete housing instance directly.

Note: As a wiring harness is often described in a 150% scope, it is possible that a ModularSlotReference references more than one ConnectorHousingRole as
usedInserts. In these cases the variant management mechanisms have to ensure, that in a concrete case only one insert is used. This can be either done

explicitly with PartStructureSpeci�cations or implicitly with a VariantCon�guration.

6.2.2 Segment Connection Points

FIGURE 77:  Example of Multiple Segment Connection Pints

The picture above shows an example of connector with multiple segment connection points (sometimes also called bundle postion / connection points). The

segment connection points are marked with red circles. Such connectors have multiple entry points for wires, that can be used alternatively or at the

simultaniously. The geometric position of the segment connection points is different, that they have to be treated individually, so each segment connection

point is accessed via an individual SegmentConnectionPoint

FIGURE 78:  Instanciating Segment Connection Points

The example shows a connector that has two cavity, that are only reachable through different segment connection points. By associating these

SegmentConnectionPoints with corresponding PlacementPoints the SegmentConnectionPoint become ‘placeable’ on nodes in the topology of a harness.

http://localhost:8080/specifications/vec/v210/classes/partoccurrence/
http://localhost:8080/specifications/vec/v210/classes/modularslotreference/
http://localhost:8080/specifications/vec/v210/classes/connectorhousingrole/
http://localhost:8080/specifications/vec/v210/classes/modularslotreference/
http://localhost:8080/specifications/vec/v210/classes/connectorhousingrole/
http://localhost:8080/specifications/vec/v210/classes/partstructurespecification/
http://localhost:8080/specifications/vec/v210/classes/variantconfiguration/
http://localhost:8080/specifications/vec/v210/classes/segmentconnectionpoint/
http://localhost:8080/specifications/vec/v210/classes/segmentconnectionpoint/
http://localhost:8080/specifications/vec/v210/classes/placementpoint/


6.2.3 Wire Addons

6.2.3.1 Cavities

FIGURE 79:  Cavity Add-Ons

This example shows how add-ons for cavities in a connector could be de�ned. In this example, the ConnectorHousingSpeci�cation has two different

SegmentConnectionPoints. Each of them is de�ning it’s own CavityAddOn. So depending on the SegmentConnectionPoint used, a Cavity can have for

example 50mm as well as 150mm as Add-On.

6.2.3.2 Modular Slots

FIGURE 80:  Add-Ons for Modular Slots

If a ConnectorHousingSpeci�cation has ModularSlots, the Add-ons are not de�ned individually for all cavities for all possible inserts, but **only per

ModularSlot. The Add-On de�ned in the ModularSlotAddOn, is the Add-On need to reach the ModularSlot from the corresponding SegmentConnectionPoint.

The add-on needed to reach a certain cavity in an used insert, can be obtain from ConnectorHousingSpeci�cation of the used insert.

http://localhost:8080/specifications/vec/v210/classes/connectorhousingspecification/
http://localhost:8080/specifications/vec/v210/classes/segmentconnectionpoint/
http://localhost:8080/specifications/vec/v210/classes/cavityaddon/
http://localhost:8080/specifications/vec/v210/classes/segmentconnectionpoint/
http://localhost:8080/specifications/vec/v210/classes/cavity/
http://localhost:8080/specifications/vec/v210/classes/connectorhousingspecification/
http://localhost:8080/specifications/vec/v210/classes/modularslot/
http://localhost:8080/specifications/vec/v210/classes/modularslot/
http://localhost:8080/specifications/vec/v210/classes/modularslotaddon/
http://localhost:8080/specifications/vec/v210/classes/modularslot/
http://localhost:8080/specifications/vec/v210/classes/segmentconnectionpoint/
http://localhost:8080/specifications/vec/v210/classes/connectorhousingspecification/


6.2.3.3 ConnectorHousingCap

FIGURE 81:  Wire Add-Ons for the Usage of Caps

Wire add-ons caused by cap’s are de�ned in the ConnectorHousingCapSpeci�cation. The speci�ed value is the add-on required to reach the

SegmentConnectionPoint of the ConnectorHousing from the entry point of the cap.

6.3 Splices

FIGURE 82:  Examples of contacting a splice terminal

A splice is normally used to create a contacting between multiple wires with the same potential e.g. for ground distribution. A splice can be created with or

without real material (e.g. ultra-sonic welding vs. crimping). The �gure above is a schematic illustration of the two common types of splices. On the left side

is an end splice, on the right side an inline or parallel splice. The following sections will give you a comparison of those variants every time a different

handling is needed. To do so the examples of an end splice with just two wire ends and an inline splice with one wire end on the left and two wire ends on the

right will be used. (see �gure 2 + 3)

6.3.1 Part Master De�nition

6.3.1.1 Technical Properties

In the VEC the technical properties of splices are de�ned with a SpliceTerminalSpeci�cation. The speci�cation can represent a process de�nition (e.g. for

ultra-sonic welding) or a real component (e.g. the sleeve for crimped splices). The different types of splices are de�ned with the inner structure of the

speci�cation (WireReceptions and their relations)

Before reading this implementation guideline, it is highly recommended to read the following sections in the VEC Online Model Description �rst:

“Terminals”

“Contacting Speci�cation”



http://localhost:8080/specifications/vec/v210/classes/connectorhousingcapspecification/
http://localhost:8080/specifications/vec/v210/classes/segmentconnectionpoint/
http://localhost:8080/specifications/vec/v210/classes/spliceterminalspecification/
http://localhost:8080/specifications/vec/v210/classes/wirereception/
http://localhost:8080/specifications/vec/v210/component-characteristics/terminals/
http://localhost:8080/specifications/vec/v210/connectivity/contacting-specification/


FIGURE 83:  End splice example FIGURE 84:  Inline splice example

An end splices connects all wire ends together. This is why only one single WireReception is
needed

In case of a parallel splice the SpliceTerminalSpeci�cation contains a wire reception for each
side.

Splice definition

Wire receptions

Internal terminal
connection

Legend

6.3.1.2 Placeability

To allow the placement of a splice in the topology it requires a PlaceableElementSpeci�cation (compare Placement and Dimensions).

Inline splice example

In case of an inline splice it might be neccessary to know / to specify the orientation of the

splice in the topology. The details of a placement are de�ned with individual PlacementPoints
in the PlaceableElementSpeci�cation.To associate this with the splice speci�c properties, a
WireReception can reference the PlacementPoint that represents itself in the placement.

6.3.2 Usage

6.3.2.1 Instantiation

Instances are required when using splices in a harness or wiring de�nition (see Instances of Components). Splice speci�c properties are de�ned with a

SpliceTerminalRole. The role contains all instance information about the splice like sealing or insulation and it also contains a WireReceptionReference

foreach WireReception in the part master de�nition.

End splice example Inline splice example

The end splice needs just one WireReceptionReference In case of the inline splice two WireReceptionReferences have to be put in the
SpliceTerminalRole

To de�ne reference elements for de�nition of the placement of a splice in the topolgy, a PlaceableElementRole has to be put inside the instance
representation. This is valid for both example cases.

Inline splice example

When the direction of the inline splice shall be speci�ed, it is necessary to create

PlacementPointReferences underneath the PlaceableElementRole. They represent the spots
of the splice which shall be placed in the topology instead of the whole splice itself. For the
inline splice example two PlacementPointReferences are required, referencing the

PlacementPoints from the master data de�nition.

Proposal: If a TerminalSpeci�cation does not de�ne any InternalTerminalConnection, the default assumption is that all recepetions (wire &

terminal) are short circuited (have the same potential). So, for most regular splices it is not required to de�ned InternalTerminalConnections.


http://localhost:8080/specifications/vec/v210/classes/wirereception/
http://localhost:8080/specifications/vec/v210/classes/spliceterminalspecification/
http://localhost:8080/specifications/vec/v210/classes/placeableelementspecification/
http://localhost:8080/specifications/vec/guidelines/placement-and-dimensions/
http://localhost:8080/specifications/vec/v210/classes/placementpoint/
http://localhost:8080/specifications/vec/v210/classes/placeableelementspecification/
http://localhost:8080/specifications/vec/v210/classes/wirereception/
http://localhost:8080/specifications/vec/v210/classes/placementpoint/
http://localhost:8080/specifications/vec/guidelines/product-definition/component-instances/
http://localhost:8080/specifications/vec/v210/classes/spliceterminalrole/
http://localhost:8080/specifications/vec/v210/classes/wirereceptionreference/
http://localhost:8080/specifications/vec/v210/classes/wirereception/
http://localhost:8080/specifications/vec/v210/classes/wirereceptionreference/
http://localhost:8080/specifications/vec/v210/classes/wirereceptionreference/
http://localhost:8080/specifications/vec/v210/classes/spliceterminalrole/
http://localhost:8080/specifications/vec/v210/classes/placeableelementrole/
http://localhost:8080/specifications/vec/v210/classes/placementpointreference/
http://localhost:8080/specifications/vec/v210/classes/placeableelementrole/
http://localhost:8080/specifications/vec/v210/classes/placementpointreference/
http://localhost:8080/specifications/vec/v210/classes/placementpoint/
http://localhost:8080/specifications/vec/v210/classes/internalterminalconnection/


6.3.2.2 Contacting

Splices exist in 100% or 150% con�gurations (e.g. to create a ground distribution point for wires from different modules). The part master de�nition of the

splice contains exactly one WireReception if it is an End-Splice. In case of an Inline (e.g. a Parallel Splice) the part master data de�nition contains as many

Wirereceptions as directions exists from which a contacting can be realized.

Different prede�ned contacting variants (100%) of the splice are expressed by one ContactPoint per variant. If the splice has no variants, it de�nes just one

ContactPoint. If the splice is unde�ned at design time and actual variants are only known at manufacturing time, one ContactPoint per WireEnd shall be
used.

If different con�gurations require different terminal / contacting material (e.g. crimp sleeves) the corresponding material needs to be expressed by a new

splice instance (part master data + instance + contact points for all variants with new material). This is the same situation when a certain position can be

realized with connector housing with different number of cavities. If different con�gurations require (different) additional material (e.g. sealings) it is also

referenced from the ContactPoints as WireEndAccessory.

For inline splices (more than one WireReception) there are situations where the allocation of wires to sides / wire receptions is free or is not explicitly

de�ned. However, if it necessary to de�nes this assignment explicitly WireMountingDetails are added to the WireMounting in the ContactPoint. The

WireMountingDetail de�nes which WireEnds are related to which WireReceptionReference.

6.3.2.3 Placement

The splice terminal is placed in the topology with a Placement contained in a PlacementSpeci�cation and a PlaceableElementRole contained in the

OccurrenceOrUsage. A detailed description can be found in the speci�cation “Placement and Dimensions” and corresponding implementation guideline.

If a splice has more than one WireReception and if it is required to de�ne the exact orientation of the splice in the topology, or the splice has such a size that

the exact positioning makes a geometrical difference (e.g. high voltage splices), then such a de�nition is possible in the VEC.

A prerequisite for this is, that the topology has to de�ne individual TopologyNodes for each WireReceptionReference, instead of one node, when orientation is

irrelevant (see �gure below).

FIGURE 85:  TopologyNodes per WireReception

The details of the placement are then de�ned with references between the corresponding NodeLocations and the PlacementPointReferences representing

the WireReceptionReferences (compare the instance diagram below).

FIGURE 86:  Placement of wire receptions

These very detailed levels of representation are only required if the allocation of wires to speci�c receptions / sides of a splice shall be de�ned

and/or the orientation of the splice in the topology is relevant. If this is not the case, WireReceptionReferences, PlacementPointReferences etc.


http://localhost:8080/specifications/vec/v210/classes/contactpoint/
http://localhost:8080/specifications/vec/v210/classes/contactpoint/
http://localhost:8080/specifications/vec/v210/classes/contactpoint/
http://localhost:8080/specifications/vec/v210/classes/wireend/
http://localhost:8080/specifications/vec/v210/classes/contactpoint/
http://localhost:8080/specifications/vec/v210/classes/wirereception/
http://localhost:8080/specifications/vec/v210/classes/wiremountingdetail/
http://localhost:8080/specifications/vec/v210/classes/wiremounting/
http://localhost:8080/specifications/vec/v210/classes/contactpoint/
http://localhost:8080/specifications/vec/v210/classes/wiremountingdetail/
http://localhost:8080/specifications/vec/v210/classes/wireend/
http://localhost:8080/specifications/vec/v210/classes/wirereceptionreference/
http://localhost:8080/specifications/vec/v210/classes/placement/
http://localhost:8080/specifications/vec/v210/classes/placementspecification/
http://localhost:8080/specifications/vec/v210/classes/placeableelementrole/
http://localhost:8080/specifications/vec/v210/classes/occurrenceorusage/
http://localhost:8080/specifications/vec/v210/topology-and-geometry/placement-and-dimensions/
http://localhost:8080/specifications/vec/guidelines/placement-and-dimensions/
http://localhost:8080/specifications/vec/v210/classes/wirereception/
http://localhost:8080/specifications/vec/v210/classes/topologynode/
http://localhost:8080/specifications/vec/v210/classes/wirereceptionreference/
http://localhost:8080/specifications/vec/v210/classes/nodelocation/
http://localhost:8080/specifications/vec/v210/classes/placementpointreference/
http://localhost:8080/specifications/vec/v210/classes/wirereceptionreference/
http://localhost:8080/specifications/vec/v210/classes/wirereceptionreference/
http://localhost:8080/specifications/vec/v210/classes/placementpointreference/


6.3.3 XML-Example

The following XML listings show an example of splice instance with placed WireReceptions

6.3.3.1 Part Master Data

6.3.3.2 Instance

can be omitted.

<DocumentVersion id="documentVersion_1">

        [...]

        <ReferencedPart>partVersion_1</ReferencedPart>

        <Specification id="wireReceptionSpecification_1" xsi:type="vec:WireReceptionSpecification" >

            <Identification>SpliceReception</Identification>

            <CoreCrossSectionArea id="valueRange_1">

                <Minimum>0.5</Minimum>

                <Maximum>1.5</Maximum>

                [...]

            </CoreCrossSectionArea>

        [...]

        </Specification>

        <Specification id="spliceTerminalSpecification_1" xsi:type="vec:SpliceTerminalSpecification">

            <Identification>Splice</Identification>

            <DescribedPart>partVersion_1</DescribedPart>

            <WireReception id="wireReception_1">

                <Identification>Left</Identification>

                <WireReceptionSpecification>wireReceptionSpecification_1</WireReceptionSpecification>

                <PlacementPoint>placementPoint_1</PlacementPoint>

            </WireReception>

            <WireReception id="wireReception_2">

                <Identification>Right</Identification>

                <WireReceptionSpecification>wireReceptionSpecification_1</WireReceptionSpecification>

                <PlacementPoint>placementPoint_2</PlacementPoint>

            </WireReception>

        </Specification>

        <Specification id="placeableElementSpecification_1" xsi:type="vec:PlaceableElementSpecification">

            <Identification>Pes</Identification>

            <PlacementPoint id="placementPoint_1">

                <Identification>First</Identification>

            </PlacementPoint>

            <PlacementPoint id="placementPoint_2">

                <Identification>Second</Identification>

            </PlacementPoint>

        </Specification>

        [...]

    </DocumentVersion>

     <PartVersion id="partVersion_1">

        <CompanyName>The VEC Company Ltd.</CompanyName>

        <PartNumber>007_123</PartNumber>

        <PartVersion>1</PartVersion>

        <PrimaryPartType>SpliceTerminal</PrimaryPartType>

    </PartVersion> 

<PartOccurrence id="partOccurrence_1">

        <Role xsi:type="vec:PlaceableElementRole" id="placeableElementRole_1">

             <Identification>PlaceableElementRole</Identification>

             <PlaceableElementSpecification>placeableElementSpecification_1</PlaceableElementSpecification>

             <PlacementPointReference id="placementPointReference_1">

                 <Identification>placementPointReference_1</Identification>

                 <PlacementPoint>placementPoint_1</PlacementPoint>

             </PlacementPointReference>

             <PlacementPointReference id="placementPointReference_2">

                 <Identification>placementPointReference_2</Identification>

                 <PlacementPoint>placementPoint_2</PlacementPoint>

             </PlacementPointReference>

         </Role>

        <Role xsi:type="vec:SpliceTerminalRole" id="spliceTerminalRole_1">

            <Identification>SpliceTerminalRole</Identification>

            <TerminalSpecification>spliceTerminalSpecification_1</TerminalSpecification>

            <WireReceptionReference id="wireReceptionReference_1">

                <Identification>Left</Identification>

                <WireReception>wireReception_1</WireReception>

            </WireReceptionReference>

            <WireReceptionReference id="wireReceptionReference_2">

                <Identification>Right</Identification>

                <WireReception>wireReception_2</WireReception>

            </WireReceptionReference>

        </Role>

        <Part>partVersion_1</Part>

    </PartOccurrence>

http://localhost:8080/specifications/vec/v210/classes/wirereception/


6.3.3.3 Placement

6.4 Accessories

6.4.1 Part Master De�nition

FIGURE 87:  Accessories

Part A being an accessory for Part B means, that if Part B is used somewhere in a harness, then Part A might (or must) be used as well. These can be for

example backshells, connector housing locks, clips, cable ties. In the VEC, any part classi�cation can be an accessory to another part. A relation between

PartVersion and its accessories can be established with a PartRelation in a GeneralTechnicalPartSpeci�cation

6.4.1.1 Example

The following table shows examples for the usage of a PartRelation and the corresponding semantic meanings.

  <Specification xsi:type="vec:PlacementSpecification" id="placementSpecification_1">

        <Identification>PLACEMENT</Identification>

        <Placement xsi:type="vec:OnPointPlacement" id="placement_1">

            <Identification>Splice</Identification>

            <Location xsi:type="vec:NodeLocation" id="location_1">

                <Identification>Left</Identification>

                <ReferencedNode>node_1</ReferencedNode>

                <PlacedPlacementPoints>placementPointReference_1</PlacedPlacementPoints>

            </Location>

            <Location xsi:type="vec:NodeLocation" id="location_2">

                <Identification>Rigth</Identification>

                <ReferencedNode>node_2</ReferencedNode>

                <PlacedPlacementPoints>placementPointReference_2</PlacedPlacementPoints>

            </Location>

        </Placement>

        [...]

    </Specification>

    <Specification xsi:type="vec:TopologySpecification" id="topologySpecification_1">

        <TopologyNode id="node_1">

            <Identification>PNID1</Identification>

        </TopologyNode>

        <TopologyNode id="node_2">

            <Identification>PNID2</Identification>

        </TopologyNode>

    </Specification>

http://localhost:8080/specifications/vec/v210/classes/partversion/
http://localhost:8080/specifications/vec/v210/classes/partrelation/
http://localhost:8080/specifications/vec/v210/classes/generaltechnicalpartspecification/
http://localhost:8080/specifications/vec/v210/classes/partrelation/


# Example Meaning

In

numbers

1 The part A
has to be
used exactly

3 times or
exactly 6
times.

3 x A ; 6
x A

2 The part B

has to be
used exactly
0 times or

exactly 2
times.

0 x B ; 2

x B

3 The part C
has to be

used exactly
3 times.

3 x C

4 The part C
has to be
used exactly

3 times.
This is
semantically
equivalent

with
example #3.

3 x C

5 The parts D
& E & F have

to be used
exactly 1
times or 0

times.

0..1 x
(D,E,F)

6 The part G
have to be
used exactly

0 times or 2,
3, 5 times.

(0,2,3,5)
x G

1

2

3

4

5

6

7

8

<PartRelation id="id_1">

   <RelationType>Mandatory</RelationType>

   <AccessoryPart>A A A</AccessoryPart>

</PartRelation>

<PartRelation id="id_2">

   <RelationType>Optional</RelationType>

   <AccessoryPart>A A A</AccessoryPart>

</PartRelation>

1

2

3

4

<PartRelation id="id_3">

   <RelationType>Optional</RelationType>

   <AccessoryPart>B B</AccessoryPart>

</PartRelation>

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

<PartRelation id="id_4">

   <RelationType>Mandatory</RelationType>

   <AccessoryPart>C</AccessoryPart>

</PartRelation>

<PartRelation id="id_5">

   <RelationType>Mandatory</RelationType>

   <AccessoryPart>C</AccessoryPart>

</PartRelation>

<PartRelation id="id_6">

   <RelationType>Mandatory</RelationType>

   <AccessoryPart>C</AccessoryPart>

</PartRelation>

1

2

3

4

<PartRelation id="id_4">

   <RelationType>Mandatory</RelationType>

   <AccessoryPart>C C C</AccessoryPart>

</PartRelation>

1

2

3

4

<PartRelation id="id_7">

   <RelationType>Optional</RelationType>

   <AccessoryPart>D E F</AccessoryPart>

</PartRelation>

1

2

3

4

5

6

7

8

<PartRelation id="id_8">

   <RelationType>Optional</RelationType>

   <AccessoryPart>G G G</AccessoryPart>

</PartRelation>

<PartRelation id="id_9">

   <RelationType>Optional</RelationType>

   <AccessoryPart>G G</AccessoryPart>

</PartRelation>



Grommet

Wire
Seal

FIGURE 89:  Grommet with Individual Wire Sealing

# Example Meaning

In

numbers

7 The part K

have to be
used
between 3
and 6 times.

3..6 x K

6.4.2 Instantiation

As described in the previous section, de�nitions can be made the part master data which accessories are required in which combination for a component. In

the implementation in the wiring harness, however, there are also degrees of freedom as to which accessories are actually used. Therefore, the master data

can only de�ne valid possibilities; which variant is used must be de�ned at the concrete occurrence.

In the VEC the accessory occurrence → parent occurrence relationship is represented by the ReferenceElement association, where the accessory occurrence
references the OccurrenceOrUsage it depends on / relates to as ReferenceElement(see Instantiation of Components)

FIGURE 88:  Accessory Instances

The illustration above shows a single accessory that is associated with two reference elements. In cases where the variance control mechanisms are not yet

de�ned  completely, the condition of existence of the reference elements has implications for the accessory.

An example for such case are elaborately sealed grommets for improved

waterproo�ng. Each wire passing through the grommet requires a special

individual seal. In this case, each seal is an accessory for both the wire and

the grommet to the same extent. In concrete variants of the harness, only if a

speci�c wire exists the corresponding seal is required. However, the
association to the grommet is equally relevant, as it de�nes the position of the

seal on the wire and without the grommet the seal is also without purpose.

1. For example not all elements have a speci�c VariantCon�guration or

not all OccurrenceOrUsage are controlled by modules or harness

con�gurations. ↩ 

6.5 Grommets

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

<PartRelation id="id_10">

   <RelationType>Mandatory</RelationType>

   <AccessoryPart>K K K</AccessoryPart>

</PartRelation>

<PartRelation id="id_11">

   <RelationType>Optional</RelationType>

   <AccessoryPart>K</AccessoryPart>

</PartRelation>

<PartRelation id="id_12">

   <RelationType>Optional</RelationType>

   <AccessoryPart>K</AccessoryPart>

</PartRelation>

<PartRelation id="id_13">

   <RelationType>Optional</RelationType>

   <AccessoryPart>K</AccessoryPart>

</PartRelation>

1

An accessory can only exist if all of its ReferenceElements exist, too. However, the existence of all ReferenceElements does not automatically

imply the existence of the accessory. Additional constraints may apply, whereby the accessory the can only exist if all ReferenceElements exist

and the additional constraints are met.



http://localhost:8080/specifications/vec/v210/classes/occurrenceorusage/
http://localhost:8080/specifications/vec/v210/instances-of-components/instantiation-of-components/
http://localhost:8080/specifications/vec/v210/classes/variantconfiguration/
http://localhost:8080/specifications/vec/v210/classes/occurrenceorusage/


Body

Doo
r

Topology
Node/Segment

Wires

Grommet

FIGURE 91:  Example: Grommet in the door hinge

FIGURE 90:  Grommets And Their Placement

Grommets have certain points (the CableLeadThrough) that are relevant for the placement of a grommet. There are different types of grommets e.g.

grommets with a y-shape (1 in, 2 outgoings) or larger ones and that reach through more than one metal plane like the ones for the door hinge (illustration

below).

Up to VEC Version 1.1.3 the CableLeadThrough of a grommet was the signi�cant point for the

de�nition of a placement. However, this turned out to insu�cient for a detailed de�nition, as the

spatial extent of a grommet is often non-negligible. Therefore, since VEC 2.0.0 the signi�cant
point for a placement is the CableLeadThroughOutlets instead. Those can be associated with

PlacementPoint and this is the point where the general concept of placements in the VEC

attaches.

6.6 Channels

FIGURE 92:  Channels

CableDucts can ful�ll have to relevant aspects. They can be connected with the harness (placement). This is speci�ed with the blue classes. The

CableDuctSpeci�cation brings this aspect of use to given part. At the same time a CableDuct can have properties of a Fixing since it is often mounted to the

vehicle body as well. This aspect is de�ned by an additional FixingSpeci�cation.

6.7 Fixings

6.7.1 With PlacementPoints

http://localhost:8080/specifications/vec/v210/classes/cableleadthrough/
http://localhost:8080/specifications/vec/v210/classes/cableleadthrough/
http://localhost:8080/specifications/vec/v210/classes/cableleadthroughoutlet/
http://localhost:8080/specifications/vec/v210/classes/placementpoint/
http://localhost:8080/specifications/vec/v210/classes/cableductspecification/
http://localhost:8080/specifications/vec/v210/classes/fixingspecification/


FIGURE 93:  Fixings with Placement Points

This illustration shows the Fixing with a PlacementPoint and MeasurementPoint as a PartOccurrence.

FIGURE 94:  Placement Points in the Model

The ability to place a Fixing on a speci�c point in the topology is similar to Grommets covered by generic mechanism of PlacementPoint and

PlacementPointReference. Additionally the measurement of Fixing is covered by MeasurementPoint and MeasurementPointReference.

6.7.2 Fixings with additional Cable Ties

FIGURE 95:  Fixings with Additional Cable Tie

The diagram illustrates the de�nition of a Fixing with CableTies as Accessory. The upper half of the diagram is the de�nition of the part master data.

The Fixing is described with a PartVersion and a FixingSpeci�cation. To describe its accessories it has GeneralTechnicalPartSpeci�cation with PartRelations

to link the accessories. In this case, one CableTie is mandatory, a second one is an optional add on. Both are referencing the PartVersion of the CableTie.

The CableTie is currently de�ned with a not further detailed PartOrUsageRelatedSpeci�cation, since there is no CableTieSpeci�cation in the VEC at the

moment. That the accessory is a CableTie is de�ned by the value of the specialPartType attribute.

If there are any additional properties necessary for the CableTie, then they could be speci�ed with CustomProperties (see CustomProperty) for the

PartOrUsageRelatedSpeci�cation.

For the instancing of these components, both are created with a PartOccurrence. The Fixing is de�ned with a FixingRole, the CableTie with a Speci�cRole
(For the same reasons why a PartOrUsageRelatedSpeci�cation has been used).

7 ECUs, EE-Components and Component Boxes
E/E components, represented in the VEC by the EEComponentSpeci�cation and EEComponentRole, summarize all kinds of components with a more or less

complex electrical function. In the VEC the description of an E/E component is a combination of the following (optional) aspects:

1. Connector Interface / EE Component Header: De�nes the properties and possibilities for a connection to a wiring harness or other e/e components.

2. Internal Connectivity: De�nes the electrical connectivity within a e/e component.

3. Switching States: Add variability of a certain degree to the internal connectivity.

4. Electrical Interface: De�nes the electrical properties (e.g. peak currents) of a connector interface (see Pinning).

http://localhost:8080/specifications/vec/v210/classes/placementpoint/
http://localhost:8080/specifications/vec/v210/classes/measurementpoint/
http://localhost:8080/specifications/vec/v210/classes/partoccurrence/
http://localhost:8080/specifications/vec/v210/classes/placementpoint/
http://localhost:8080/specifications/vec/v210/classes/placementpointreference/
http://localhost:8080/specifications/vec/v210/classes/measurementpoint/
http://localhost:8080/specifications/vec/v210/classes/measurementpointreference/
http://localhost:8080/specifications/vec/v210/classes/partversion/
http://localhost:8080/specifications/vec/v210/classes/fixingspecification/
http://localhost:8080/specifications/vec/v210/classes/generaltechnicalpartspecification/
http://localhost:8080/specifications/vec/v210/classes/partrelation/
http://localhost:8080/specifications/vec/v210/classes/partversion/
http://localhost:8080/specifications/vec/v210/classes/partorusagerelatedspecification/
http://localhost:8080/specifications/vec/v210/classes/cabletiespecification/
http://localhost:8080/specifications/vec/v210/classes/customproperty/
http://localhost:8080/specifications/vec/v210/classes/partorusagerelatedspecification/
http://localhost:8080/specifications/vec/v210/classes/partoccurrence/
http://localhost:8080/specifications/vec/v210/classes/fixingrole/
http://localhost:8080/specifications/vec/v210/classes/partorusagerelatedspecification/
http://localhost:8080/specifications/vec/v210/classes/eecomponentspecification/
http://localhost:8080/specifications/vec/v210/classes/eecomponentrole/
http://localhost:8080/specifications/vec/guidelines/ee-components/pinning/


5. Type Speci�c Properties: De�nes properties that apply only to speci�c e/e component types (e.g. capacity for a battery).

E/E Components in terms of the VEC can be for example:

ECU’s

Relays

Fuses

Multifuses

Component Boxes

7.1 Connector Interface / EE Component Header

7.1.1 Basic Structure

Instantiation Example

Any E/E-Component has some kind of connector interface. This can be an interface to attach a harness or another E/E component. For the variety of

possible usage see the next section.

An E/E-Component is represented in the VEC by an EEComponentSpeci�cation. The connector interface of an E/E-Component is represented by a

HousingComponent. The HousingComponent separates into two aspect:

1. Geometrical: It references a ConnectorHousingSpeci�cation to describe the geometrical / mechanical properties of the connector, e.g. the shape, slot
layout, number of cavities etc. As this is the same Speci�cation that is used for harness connectors it just de�nes an empty housing, without pins and

terminals.

2. Electrical: The electrical properties of the connector, the actual pins in the housing, are represented by the PinComponent. The physical properties of

the pin are represented by a TerminalSpeci�cation.

The �gure Instantiation Example shows the structure for an E/E component with a single pin. The following XML listing shows the same as xml snippet:

<Specification xsi:type=vec:EEComponentSpecification" id"id_ecomponent_spec_1498">

    <Identification>DSC</Identification>

    <DescribedPart>...</DescribedPart>

    <HousingComponent id="id_housing_comp_1500">

        <Identification>A1</Identification>

        <HousingSpecification>id_connect_hous_spec_1501</HousingSpecification>

        <PinComponent id="id_pin_comp_1506">

            <Identification>1</Identification>

            <PinSpecification>id_terminal_spec_1511</PinSpecification>

            <ReferencedCavity>id_cavity_1504</ReferencedCavity>

        </PinComponent>

    </HousingComponent>

</Specification>

<Specification xsi:type="vec:ConnectorHousingSpecification" id"id_connect_hous_spec_1501">

    <Identification>37548</Identification>

    <SpecialPartType>HarnessConnector</SpecialPartType>

    <Slot xsi:type="vec:Slot" id"id_slot_1502">

        <SlotNumber>A</SlotNumber>

        <Cavity id="id_cavity_1504">

            <CavityNumber>1</CavityNumber>

        </Cavity>

    </Slot>

</Specification>

<Specification xsi:type="vec:TerminalSpecification" id"id_terminal_spec_1511">

    <Identification>Usn3B323a4a10a614881C33</Identification>

    ...

</Specification>

http://localhost:8080/specifications/vec/guidelines/ee-components/relays/
http://localhost:8080/specifications/vec/guidelines/ee-components/fuses/
http://localhost:8080/specifications/vec/guidelines/ee-components/multi-fuses/
http://localhost:8080/specifications/vec/guidelines/ee-components/component-boxes/
http://localhost:8080/specifications/vec/v210/classes/eecomponentspecification/
http://localhost:8080/specifications/vec/v210/classes/housingcomponent/
http://localhost:8080/specifications/vec/v210/classes/housingcomponent/
http://localhost:8080/specifications/vec/v210/classes/connectorhousingspecification/
http://localhost:8080/specifications/vec/v210/classes/specification/
http://localhost:8080/specifications/vec/v210/classes/pincomponent/
http://localhost:8080/specifications/vec/v210/classes/terminalspecification/


Main Structure

7.1.2 Connector / Interface Types

Note: This section is in particular relevant for component boxes, as they have the greatest variance of different interface types. However, all these interface
types can as well appear in other EE components. To understand the technical background and the de�nition of the different types, please read the article
about Component Boxes

All (pluggable) electrical interfaces of a EE component to other

components or the harness are represented by a HousingComponent. That

means for each fuse, multi fuse or relay slot and for all pluggable harness

connectors or direct contacting connectors a HousingComponent is
de�ned.

Each HousingComponent references a ConnectorHousingSpeci�cation

that de�nes the geometrical properties of the slot.

Version < 1.2.0: The classi�cation of the housing component (e.g. is it a

fuse or relay slot) is done with the specialPartType of the associated ConnectorHousingSpeci�cation.

Version >= 1.2.0: VEC 1.2.0 introduced a compatibleTypes attribute in the HousingComponent to de�ne what type of components are valid counter parts for

a housing component. This is considered as an additional information to the pre 1.2.0 way.

Note: Slots for multi fuses are also represented by one HousingComponent.

Type of Slot ConnectorHousingSpeci�cation.SpecialPartType (V1.1.3)
HousingComponent.CompatibleTypes
(V1.2.0)

Fuse slot FuseConnector Fuse

Multi fuse slot MultiFuseConnector MultiFuse

Relays slot RelayConnector Relay

Direct Contacting WiringConnector Terminal

Slot for Harness Connector HarnessConnector ConnectorHousing

Slot for Ring Terminals of a Harness HarnessConnector RingTerminal

Modular Slot for other E/E-Components … EEComponent

In �gure E/E-Component Interfaces the instantiation of such a structure is partially shown. The details of a connector description with Slot, Cavity and

PinComponent are only implied on the left side.

E/E-Component Interfaces

The listing below shows the general xml structure for such a component box. Omitted blocks are marked with “…”.

http://localhost:8080/specifications/vec/guidelines/ee-components/component-boxes/
http://localhost:8080/specifications/vec/v210/classes/housingcomponent/
http://localhost:8080/specifications/vec/v210/classes/housingcomponent/
http://localhost:8080/specifications/vec/v210/classes/housingcomponent/
http://localhost:8080/specifications/vec/v210/classes/connectorhousingspecification/
http://localhost:8080/specifications/vec/v210/classes/connectorhousingspecification/
http://localhost:8080/specifications/vec/v210/classes/housingcomponent/
http://localhost:8080/specifications/vec/v210/classes/housingcomponent/
http://localhost:8080/specifications/vec/v210/classes/slot/
http://localhost:8080/specifications/vec/v210/classes/cavity/
http://localhost:8080/specifications/vec/v210/classes/pincomponent/


Component Box Schematic Illustration

7.2 Internal Connectivity

7.2.1 Connections

This section applies to all kind of internal connections in E/E components. One of the major

use cases for this is the representation of internal connectivity of component boxes, since

this is an important information, for example for physical validation or the calculation of

current �ows in the network. The model elements can also be used to represent the internal

connectivity of a relay or any other E/E component. However, when it comes to software

enabled component states (e.g. ECUs) the feasibility is more than questionable.

In �gure Component Box Schematic Illustration the internal connections are illustrated by

the red and black lines (2). In terms of the VEC, an InternalComponentConnection de�nes a

logical (conductive) connection between a number of PinComponent within a E/E

component. This representation does not consider the actual realization of the conductivity.

This means, when multiple pins are connected, that the representation in the model is the

same whether it is realized by point to point connections, a conductor rail or direct
contacting.

In �gure Instancing for Internal Connections an instance diagram is shown for a power distribution connection between a supply on the left side and the

individual fuse slots on the right side.

Note: The essential criteria for a InternalComponentConnection is the electrical conductivity. So even if the connection in the example would be realized by
three individual conductors between the left and the right side, it would be represented by one InternalComponentConnection

<Specification xsi:type="vec:EEComponentSpecification" id"id_ecomponent_spec_1463">

  <Identification>Dnq3202104816a236</Identification>

  <SpecialPartType>FuseOrRelayCarrier</SpecialPartType>

  <DescribedPart>id_part_ver_1419</DescribedPart>

  ...

  <HousingComponent id="id_housing_comp_1466">

      <Identification>B</Identification>

      <HousingSpecification>id_connect_hous_spec_1430</HousingSpecification>

      ...

  </HousingComponent>

  <HousingComponent id="id_housing_comp_1478">

      <Identification>G2</Identification>

      <HousingSpecification>id_connect_hous_spec_1459</HousingSpecification>

      ...

  </HousingComponent>

</Specification> 

<Specification xsi:type="vec:ConnectorHousingSpecification" id"id_connect_hous_spec_1430">

  <Identification>WIRING</Identification>

  <SpecialPartType>WiringConnector</SpecialPartType>

  <Slot xsi:type="vec:Slot" id"id_slot_1432">

      ...

  </Slot>

</Specification> 

<Specification xsi:type="vec:ConnectorHousingSpecification" id"id_connect_hous_spec_1459">

  <Identification>FUSE</Identification>

  <SpecialPartType>FuseConnector</SpecialPartType>

  <Slot xsi:type="vec:Slot" id"id_slot_1460">

      ...

  </Slot>

</Specification>

http://localhost:8080/specifications/vec/v210/classes/internalcomponentconnection/
http://localhost:8080/specifications/vec/v210/classes/pincomponent/
http://localhost:8080/specifications/vec/v210/classes/internalcomponentconnection/
http://localhost:8080/specifications/vec/v210/classes/internalcomponentconnection/


Switching States Illustration

Instancing for Internal Connections

7.2.2 Switching States

In �gure Switching States Illustration a simple EEComponentSpeci�cation with SwitchingState is

schematically shown. In �gure Switching States the corresponding representation in VEC is shown. It is a

simple switch with two states. In the example, the switch has two HousingComponent, meaning it has two

connectors, one for the IN-side and one for OUT-side. The housing component for the IN-side has one

PinComponent, the OUT-side has two of them. However, a real example could as well have just one
HousingComponent with three PinComponent. The pin on the IN-side is connected to the pins on the OUT-

side with a switchable XOR-connection.

The IN-side (highlighted in red) and the OUT-side (highlighted in green) are represented in the VEC as a

connector interface of your choice, as described in Connector Interface / EE Component Header. In the VEC

a InternalComponentConnection is free of variance, therefore each state of the XOR-connection of the

example is represented by an individual InternalComponentConnection (A.1 -> B.1) and (A.1 -> B.2). The switch in this example has two switching states (B1
& B2), each referencing one InternalComponentConnection, meaning that if the state is active, the corresponding connections exist / have electrical

conductivity. The fact, that B1 & B2 are mutally exclusive to each are other is currently not represented in the VEC.

Note: Without the additional information of the switching states, the representation with two InternalComponentConnection would be illegal, as it would
semantically equivalent to representation with one InternalComponentConnection referencing three PinComponent

Switching States

7.3 Fuses

http://localhost:8080/specifications/vec/v210/classes/eecomponentspecification/
http://localhost:8080/specifications/vec/v210/classes/switchingstate/
http://localhost:8080/specifications/vec/v210/classes/housingcomponent/
http://localhost:8080/specifications/vec/v210/classes/pincomponent/
http://localhost:8080/specifications/vec/v210/classes/housingcomponent/
http://localhost:8080/specifications/vec/v210/classes/pincomponent/
http://localhost:8080/specifications/vec/v210/classes/internalcomponentconnection/
http://localhost:8080/specifications/vec/v210/classes/internalcomponentconnection/
http://localhost:8080/specifications/vec/v210/classes/internalcomponentconnection/
http://localhost:8080/specifications/vec/v210/classes/internalcomponentconnection/
http://localhost:8080/specifications/vec/v210/classes/internalcomponentconnection/
http://localhost:8080/specifications/vec/v210/classes/pincomponent/


Multi Fuse Illustration

FIGURE 96:  Fuses

A single fuse is a two-terminal component that can be plugged or screwed into a compatible fuse slot. There are different types, which differ in their

geometry, the type of connection, the tripping characteristics and their rated voltage.

In VEC a fuse is handled as a EE-Component and that is why the FuseSpeci�cation extends the EEComponentSpeci�cation and describes it’s the available

connector interface also with a HousingComponent and - in this case - with two PinComponents. The FuseSpeci�cation de�nes the typical component
attributes, i.e. the maximum electric current information for the fuse.

In addition to that the geometrical structure is described by a ConnectorHousingSpeci�cation with it’s Slots and their Cavities (Cavity ). The PinComponents

can be described in a more detailed way by usage of the PinComponentBehavior. Special information about the signal, signal direction or voltage can be

placed here.

The PinComponent can reference a TerminalSpeci�cation to de�ne the physical properties of the pin. To avoid the confusion by too many crossing lines, the
connection t the TermnalSpeci�cation is not explicitly drawn in the diagram above.

7.3.1 Instantiating fuses

Instantiating fuses is like instantiating any other EE-Component. A EEComponentRole under a PartOccurrence references the FuseSpeci�cation and all
structure elements underneath will be instantiated and references their corresponding part master element, too. For more information see E/E-Components.

7.4 Multi Fuses

A mutlifuse is a special type of fuse that combines multiple fuses in a single component (see Multi Fuse

Illustration). In contrast to a regular fuse, where there are only two interchangeable pins, the multi fuse has a

single dedicated supplying pin and multiple protected pins.

An individual fuse component is located between each protected pin and the supplying pin. Each fuse
component can have its own technical properties (e.g. max current).

As shown in �gure Speci�cation Multi Fuse a multi fuse is represented in the VEC by a

MultiFuseSpeci�cation, which is a specialization of the EEComponentSpeci�cation. Therefore all aspects

described in the general section potentially apply to multi fuses as well. This sample describes only the

aspects that are speci�c for multi fuses.

http://localhost:8080/specifications/vec/v210/classes/fusespecification/
http://localhost:8080/specifications/vec/v210/classes/eecomponentspecification/
http://localhost:8080/specifications/vec/v210/classes/housingcomponent/
http://localhost:8080/specifications/vec/v210/classes/pincomponent/
http://localhost:8080/specifications/vec/v210/classes/fusespecification/
http://localhost:8080/specifications/vec/v210/classes/connectorhousingspecification/
http://localhost:8080/specifications/vec/v210/classes/slot/
http://localhost:8080/specifications/vec/v210/classes/cavity/
http://localhost:8080/specifications/vec/v210/classes/pincomponent/
http://localhost:8080/specifications/vec/v210/classes/pincomponentbehavior/
http://localhost:8080/specifications/vec/v210/classes/terminalspecification/
http://localhost:8080/specifications/vec/v210/classes/eecomponentrole/
http://localhost:8080/specifications/vec/v210/classes/partoccurrence/
http://localhost:8080/specifications/vec/v210/classes/fusespecification/
http://localhost:8080/specifications/vec/guidelines/ee-components/
http://localhost:8080/specifications/vec/v210/classes/multifusespecification/
http://localhost:8080/specifications/vec/v210/classes/eecomponentspecification/
http://localhost:8080/specifications/vec/guidelines/ee-components/


In the VEC, a multi fuse has one HousingComponent with a PinComponent for each pin. Each integrated fuse in the multifuse is represented by a

FuseComponent. The fuse component references the pin components that are connected through it and speci�es the properties for this (e.g. iMax) through

a FuseSpeci�cation.

The geometrical shape of the multi fuse is de�ned by a ConnectorHousingSpeci�cation with Slot and Cavity. The cavities are referenced by the pin

components.

Speci�cation Multi Fuse

http://localhost:8080/specifications/vec/v210/classes/housingcomponent/
http://localhost:8080/specifications/vec/v210/classes/pincomponent/
http://localhost:8080/specifications/vec/v210/classes/fusecomponent/
http://localhost:8080/specifications/vec/v210/classes/fusespecification/
http://localhost:8080/specifications/vec/v210/classes/connectorhousingspecification/
http://localhost:8080/specifications/vec/v210/classes/slot/
http://localhost:8080/specifications/vec/v210/classes/cavity/


7.5 Relays

<Specification id="id_2000_0" xsi:type"vec:MultiFuseSpecification">

<Identification>MF-3x100</Identification>

<DescribedPart>id_1001_0</DescribedPart>

<HousingComponent id="id_2023_0">

<Identification>Hco-MF-3x100</Identification>

<HousingSpecification>id_2000_1</HousingSpecification>

<PinComponent id="id_2024_0">

<Identification>V</Identification>

<Description id="id_1003_1" xsi:type"vec:LocalizedString">

<LanguageCode>De</LanguageCode>

<Value>Versorgung</Value>

</Description>

<ReferencedCavity>id_2020_3</ReferencedCavity>

</PinComponent>

<PinComponent id="id_2024_1">

<Identification>1A</Identification>

<ReferencedCavity>id_2020_0</ReferencedCavity>

</PinComponent>

<PinComponent id="id_2024_2">

<Identification>2A</Identification>

<ReferencedCavity>id_2020_1</ReferencedCavity>

</PinComponent>

<PinComponent id="id_2024_3">

<Identification>3A</Identification>

<ReferencedCavity>id_2020_2</ReferencedCavity>

</PinComponent>

</HousingComponent>

<IMaxTotal id="id_2080_0">

<UnitComponent>id_1005_0</UnitComponent>

<ValueComponent>300.0</ValueComponent>

</IMaxTotal>

<FuseComponents id="id_2046_0">

<Identification>F1</Identification>

<ConnectedPins>id_2024_0 id_2024_1</ConnectedPins>

<FuseSpecification>id_2000_3</FuseSpecification>

</FuseComponents>

<FuseComponents id="id_2046_1">

<Identification>F2</Identification>

<ConnectedPins>id_2024_0 id_2024_2</ConnectedPins>

<FuseSpecification>id_2000_3</FuseSpecification>

</FuseComponents>

<FuseComponents id="id_2046_2">

<Identification>F3</Identification>

<ConnectedPins>id_2024_0 id_2024_3</ConnectedPins>

<FuseSpecification>id_2000_3</FuseSpecification>

</FuseComponents>

</Specification>



FIGURE 98:  Component Box Photo

FIGURE 99:  Multifuse

FIGURE 97:  Relays

A relay is a component for switching current loads. Unlike fuses, there are more than one input pin and one output pin (number of pins >3). Some
components, referred to as relays, are in reality small controllers with up to 17 pins.

In the VEC schema a relay is a special type of an EE-Component. It also owns a HousingComponent with it’s PinComponents underneath where these

HousingComponent can be de�ned more detailed with a ConnectorHousingSpeci�cation and the PinComponents with a referenced TerminalSpeci�cation.

Also the InternalComponentConnection for (potentially) connected pins are de�ned.

Additionally to these standard EE-Component structure the RelaySpeci�cation also can contain so called SwitchingStates. Each state describes an
InternalComponentConnection as potentially existing, depending on the current switched state of the relay. In the example above the blue colored

PinComponents describe the coi contact. The connection between the two pins 30 and 87 is permanently The green colored part describes the switch,

whose connection can exist depending on the SwitchingState. So the InternalComponentConnection between the pins 85 and 86 is not permanently

guaranteed.

For more information see Switching States.

7.5.1 Instantiating relays

Instantiating relays is like instantiating any other EE-Component. A EEComponentRole under a PartOccurrence references the RelaySpeci�cation and all

structure elements underneath will be instantiated and references their corresponding part master element, too. For more information see chapter E/E-

Components.

7.6 Component Boxes

Note: The following sections will cover the technical background about component boxes. The term “component box” will be used as a general term for all
types of fuse and/or relay carrier, power distribution box etc. The detailed mapping of the different aspects on concepts of the VEC will be in EE-Components,
as the concepts are the same for regular E/E components and component boxes.

7.6.1 Overview

The image on the right side shows a photo of the front side of a component

box. The drawing shows a drawing of a component box. In general, a

component box is a component (carrier) that can be equipped with other
components (e.g. relays & fuses) and by this, provides fusing and switching

functionality to the attached wiring harness.

Basically a component box can be divided into four aspects:

1. Slots to plug-in E/E components like fuses and relays.

2. Connectivity with the wiring harness.

3. Internal connectivity.
4. Modularity

For all of these aspects, different technical solutions and variants exist. In

reality, a speci�c component box can virtually combine and mix up all of these
solution variants. To create a concise representation of a component box in

the VEC model, a combination of different concepts is necessary. Some of

these concepts are not exclusively for component boxes.

7.6.2 Plugability of E/E components

As mentioned before, a component box provides slots to plug-in other E/E-components. The following sections give

brief overview of the most relevant types.

7.6.2.1 Fuse

A fuse is a component with two pins that can be plugged or screwed into a compatible fuse slot. There exists a wide

range of different types that have individual triggering characteristics and currents, geometries, connection types etc.

7.6.2.2 Multifuse

A multi fuse is similar to a regular fuse. However, due to cost and packaging reasons multiple fuses are combined

into a single component. The individual fuses share the power supply, see the multi fuse example.

7.6.2.3 Relais

A Relais is a component used for switching of loads and has more than 3 pins.

7.6.3 Direct and Indirect Contacting

There are two different ways to create an electrical connection between the end of a wire and a corresponding fuse or relays, direct and indirect contacting.

In case of direct contacting (see direct contacting) a terminal directly attached to the wire is locked into a cavity on ones side of the component box. The
cavity goes through the component box and the pins of the fuse are directly plugged into the reception of the wire terminal. In this case, the component box

itself does not provide a electrical conductivity.

http://localhost:8080/specifications/vec/v210/classes/housingcomponent/
http://localhost:8080/specifications/vec/v210/classes/pincomponent/
http://localhost:8080/specifications/vec/v210/classes/connectorhousingspecification/
http://localhost:8080/specifications/vec/v210/classes/terminalspecification/
http://localhost:8080/specifications/vec/v210/classes/internalcomponentconnection/
http://localhost:8080/specifications/vec/v210/classes/relayspecification/
http://localhost:8080/specifications/vec/v210/classes/switchingstate/
http://localhost:8080/specifications/vec/v210/classes/internalcomponentconnection/
http://localhost:8080/specifications/vec/v210/classes/pincomponent/
http://localhost:8080/specifications/vec/v210/classes/switchingstate/
http://localhost:8080/specifications/vec/v210/classes/internalcomponentconnection/
http://localhost:8080/specifications/vec/guidelines/ee-components/#switching-states
http://localhost:8080/specifications/vec/v210/classes/eecomponentrole/
http://localhost:8080/specifications/vec/v210/classes/partoccurrence/
http://localhost:8080/specifications/vec/v210/classes/relayspecification/
http://localhost:8080/specifications/vec/guidelines/ee-components/
http://localhost:8080/specifications/vec/guidelines/ee-components/
http://localhost:8080/specifications/vec/guidelines/ee-components/


FIGURE 100:  Direct Contacting

FIGURE 101:  Component Box Drawing

FIGURE 102:  Component Box Schematic Illustration

FIGURE 103:  Modular Component Box Details

In case of indirect contacting the
component box contains a conductor

(e.g. a conductor rail) that connects

multiple cavities of the component
box, see #3, #4, #7 and #9 in the

component box drawing. The pins of

the fuse are plugged into receptions of

the conductor rail. Same applies for
the connection to the harness. The

wire terminals are grouped together

into a harness connector, which is then
attached to the component box. The

conductor rail is often used for

implementing the power distribution on the input side of a component box. In

this case, the connection to the wiring harness is often done with ring
terminals attached to bolts of the component box, see #8, #13, #14 and #16 in

the component box drawing.

A combination of both in one component box is possible (and likely), e.g. the
supplying side is realized with a conductor rail (indirect contacting) and the

protected side is realized with direct contacting.

7.6.4 Connectivity with the Wiring Harness

In case of direct contacting the component box itself serves as end point for

the wires. Therefore the last topology segment is attached to the component

box. The component box requires / provides segment connection points. From
an abstract point of view and out of the perspective of the wiring

harness, a component box with direct contacting behaves just like a

regular harness connector, see the schematic illustration (3).

In case of indirect contacting the wires and terminals are clipped into

a regular harness connector and the connector is plugged into the

component box. So, again from an abstract point of view and out of
the perspective of the wiring harness, the component box with

indirect contacting and a harness connector behaves just like a

regular E/E-Component (e.g. an ECU, an actor or a sensor), see the

schematic illustration (4) & (5).

Another variant in case of indirect contacting is the usage of ring

terminals. The component box provides a bolt and a wire is attached

to it with a ring terminal. In this case the component box behaves
like a battery or a ground bolt, see the schematic illustration (6) .

7.6.5 Internal Connectivity

For the calculation of current paths or electrical testing, a component box needs to de�ne an internal connectivity, see the schematic illustration (2). This is a
logical connectivity and it is irrelevant, if it is realized with direct or indirect contacting.

7.6.6 Modularity

Some component boxes support modular concepts, e.g. the one shown in the photo. That means the

component box can be extended with additional carriers, sockets or smaller component boxes (in a

LEGO like way). There are two concepts for modularity: with or without electrical connectivity. If you

compare the photo on top with the photo on the right you can see, that the relays socket in the lower
left corner is mechanically clipped to main component box, electrically it is independent.

In contrast to this, the orange fuse socket right beside the relay socket has its upper part plugged

into the main component box, with electric connectivity for power supply. The lower part of it
provides an independent cavity for direct contacting of the protected side.

7.7 Pinning

The following section contains examples for the de�nition of Pinning information in the VEC. This

means the speci�cation of the electrical behavior of PinComponents. Make sure you have read the
chapter “Pinning Information & Pinning Variance” before.

http://localhost:8080/specifications/vec/v210/classes/pincomponent/
http://localhost:8080/specifications/vec/v210/ee-components/pinning-information-pinning-variance/


7.7.1 PinComponentBehaviors

To de�ne the electrical behavior of a PinComponent the PinComponentBehavior is used. It is possible, that a PinComponent has more has multiple
behaviors, which are con�guration dependent (e.g. software de�ned pins on an ECU). Therefore, the PinComponentBehavior is a Con�gurableElement. With a

PinComponentBehavior various electrical characteristics of the pin can be described. The next sections contain examples for that.

7.7.1.1 PinComponentType and SignalDirection

The �gure below illustrates three E/E-components in a power distribution scenario and the logical correlations between them. Please note that the

illustration is an excerpt from the master data. Actual relationships would only be established during the use / instantiation e.g. in a wiring. This is taken into

account in that the logical relationships are only indicated by dependencies (dashed arrows).

FIGURE 104:  SPDS - Simple Power Distribution System

Our SPDS (Simple Power Distribution System :winking_face:) consists of the three components, a PowerSource (e.g. a Battery), a Distributor and a

Consumer.

The PowerSource on the left side has a PinComponent with pinComponentType='PowerDistribution' and signalDirection='Out', because it distributes
power to other components.

The Consumer on the right side has a PinComponent with pinComponentType='PowerSupply' and signalDirection='In', because the component itself is
supplied with power over that pin.

The Distributor is software-de�ned eFuse in the example, it has two PinComponents. One “B1” is used to receive power, for distribution to others, therefore it

is de�ned with pinComponentType='PowerDistribution' and signalDirection='In'. This should not be confused with
pinComponentType='PowerSupply', which indicates that the received power is used to supply the component itself with energy. The second pin “B2” is
de�ned with pinComponentType='PowerDistributionLimited' and signalDirection='Out'. This is because the pin is limited by an eFuse. For a
conventional limitation (e.g. melting fuse) the fusing would be available via the internal connectivity of the E/E component and the
pinComponentType='PowerDistribution' would be used.

Disclaimer: This page or section is currently under review by the community.

The content of this page or section can be subject to change at any time. If you �nd any issues or if you have any review comments please drop us

an issue on the PROSTEP JIRA.

This page or section resolves KBLFRM-586

⚠

http://localhost:8080/specifications/vec/v210/classes/pincomponent/
http://localhost:8080/specifications/vec/v210/classes/pincomponentbehavior/
http://localhost:8080/specifications/vec/v210/classes/pincomponent/
http://localhost:8080/specifications/vec/v210/classes/pincomponentbehavior/
http://localhost:8080/specifications/vec/v210/classes/configurableelement/
http://localhost:8080/specifications/vec/v210/classes/pincomponentbehavior/
http://localhost:8080/specifications/vec/v210/classes/pincomponent/
http://localhost:8080/specifications/vec/v210/classes/pincomponent/
http://localhost:8080/specifications/vec/v210/classes/pincomponent/
https://prostep-ivip.atlassian.net/projects/KBLFRM/
https://prostep-ivip.atlassian.net/browse/KBLFRM-586


7.7.1.2 Signal Peak Distance and Duration

FIGURE 105:  Signal Peak Distance and Duration

This example shows how a digital signal with pulse width and pulse separation can be de�ned. The PinComponentBehavior of a PinComponent has

PinVoltageInformation. The PinVoltageInformation can de�ne multiple PinTiming de�nitions. For pulsed digital signals, two PinTimings are used. One
PinTiming (Duration) describes the pulse width. The other PinTiming (Peak Distance) describes pulse separation.

7.7.1.3 Load Type Dependant Maximum Current (Relais)

FIGURE 106:  Load Type Dependant Maximum Current for Relais

Dependant on the load type (inductive, resistive, capacitive) a switching contact of a relais can have different maximum loads.

The diagram shows a PinComponent of type switch that has two PinComponentBehaviors with pinType resistive and inductive. Each PinComponentBehavior
has a PinCurrentInformation with type maxCurrent and different current values.

8 Topology

8.1 Placements and Dimensions

A Placement de�nes the way how a component is associated to the topology. The following sections contain examples about the different types of

placements.

http://localhost:8080/specifications/vec/v210/classes/pincomponentbehavior/
http://localhost:8080/specifications/vec/v210/classes/pincomponent/
http://localhost:8080/specifications/vec/v210/classes/pinvoltageinformation/
http://localhost:8080/specifications/vec/v210/classes/pinvoltageinformation/
http://localhost:8080/specifications/vec/v210/classes/pintiming/
http://localhost:8080/specifications/vec/v210/classes/pintiming/
http://localhost:8080/specifications/vec/v210/classes/pincomponent/
http://localhost:8080/specifications/vec/v210/classes/pincomponentbehavior/
http://localhost:8080/specifications/vec/v210/classes/pincomponentbehavior/
http://localhost:8080/specifications/vec/v210/classes/pincurrentinformation/


8.1.1 Simple WireProtection

FIGURE 107:  Illustration of Simple Wire Protection

This diagram illustrates the placement of a simple WireProtection as shown in next diagram.

FIGURE 108:  Wire Protection Example

The Figure above displays the placement of a simple wire protection. The PartOccurrence is placed with an OnWayPlacement via a PlaceableElementRole.

This means the placed component covers a linear area of the harness topology. The start and the end of this area is de�ned with two Locations. In the
shown situation the StartLocation is a SegmentLocation, which means the start is somewhere in the middle of a TopologySegment. It is de�ned to be at

120mm measured from the EndNode of the TopologySegment. The EndLocation of the WireProtection is located on a TopologyNode with a NodeLocation. It

is not valid to de�ne Locations with SegmentLocation, which could be also expressed by NodeLocations. This means for SegmentLocations an offset of 0 or

equal to the segment length is illegal.

Since the offset is NumericalValue it can have an optional Tolerance.

8.1.2 WireProtection with Dimension

FIGURE 109:  Illustration of Wire Protections with Dimension

http://localhost:8080/specifications/vec/v210/classes/partoccurrence/
http://localhost:8080/specifications/vec/v210/classes/onwayplacement/
http://localhost:8080/specifications/vec/v210/classes/placeableelementrole/
http://localhost:8080/specifications/vec/v210/classes/location/
http://localhost:8080/specifications/vec/v210/classes/segmentlocation/
http://localhost:8080/specifications/vec/v210/classes/topologysegment/
http://localhost:8080/specifications/vec/v210/classes/topologysegment/
http://localhost:8080/specifications/vec/v210/classes/topologynode/
http://localhost:8080/specifications/vec/v210/classes/nodelocation/
http://localhost:8080/specifications/vec/v210/classes/location/
http://localhost:8080/specifications/vec/v210/classes/segmentlocation/
http://localhost:8080/specifications/vec/v210/classes/nodelocation/
http://localhost:8080/specifications/vec/v210/classes/segmentlocation/
http://localhost:8080/specifications/vec/v210/classes/numericalvalue/
http://localhost:8080/specifications/vec/v210/classes/tolerance/


This diagram shows the previous example extended with a Dimension. In the previous example, the beginning of the WireProtection was de�ned with a

tolerance value. This method is applied, if the tolerance is applied to the next TopologyNode (Start- or End-Node of the segment).

In many cases, tolerances are de�ned relative to speci�c points (e.g. points that can be measured) somewhere in the topology. In these cases a Dimension is
used to de�ned the tolerance.

FIGURE 110:  Model of Wire Protections with dimension

The placement of the WireProtection is just the same as in the previous example. It is extended with the Dimension (highlighted in green). The Dimension
de�nes the tolerance of +/- 20mm between the TopologyNode ND-III and the beginning of the WireProtection.

The fact, that the Dimension is speci�ed between the TopologyNode and the beginning of the WireProtection is expressed, that the TopologyNode is

referenced directly (with a NodeLocation contained by the Dimension). The SegmentLocation used as DimensionAnchor is the same as used for the
placement of the WireProtection.

The valueCalculated=true �ag of the Dimension indicates that the valueComponent (220mm) is a derived an calculated value and not a user de�ned value.

This value can be obtained from the placement information and the lengths of the TopologySegment.

8.1.3 Fixing Placement

FIGURE 111:  Illustration of Fixing Placements

This diagram illustrates a more complex placement situation, including the usage of dimension.

The illustration shows a bracket, that is placed independently on two Segments (SEG-1 & SEG-2). The two points where the bracket is placed on the

TopologySegments are identi�ed separately (PlacementPointReference A & B). Additionally a Dimension is added, which gives a Tolerance between a

geometric point (e.g. a bolt) on the bracket (MeasurementPointReference C) and a Node (ND-1) in the Topology (see TopologyNode).

http://localhost:8080/specifications/vec/v210/classes/dimension/
http://localhost:8080/specifications/vec/v210/classes/topologynode/
http://localhost:8080/specifications/vec/v210/classes/dimension/
http://localhost:8080/specifications/vec/v210/classes/dimension/
http://localhost:8080/specifications/vec/v210/classes/topologynode/
http://localhost:8080/specifications/vec/v210/classes/dimension/
http://localhost:8080/specifications/vec/v210/classes/topologynode/
http://localhost:8080/specifications/vec/v210/classes/nodelocation/
http://localhost:8080/specifications/vec/v210/classes/dimension/
http://localhost:8080/specifications/vec/v210/classes/segmentlocation/
http://localhost:8080/specifications/vec/v210/classes/dimensionanchor/
http://localhost:8080/specifications/vec/v210/classes/dimension/
http://localhost:8080/specifications/vec/v210/classes/topologysegment/
http://localhost:8080/specifications/vec/v210/classes/topologysegment/
http://localhost:8080/specifications/vec/v210/classes/placementpointreference/
http://localhost:8080/specifications/vec/v210/classes/dimension/
http://localhost:8080/specifications/vec/v210/classes/tolerance/
http://localhost:8080/specifications/vec/v210/classes/measurementpointreference/
http://localhost:8080/specifications/vec/v210/classes/topologynode/


FIGURE 112:  Placement of Fixings

The diagram illustrates the instantiation of the example in the preceding diagram. Since the PartOccurrence can be placed in the topology, it has a

PlaceableElementRole (with a corresponding PlaceableElementSpeci�cation not shown in the diagram). The points where it can be placed onto the topology
are represented by the PlacementPointReferences A & B. The point which can be used as anchor for a dimension (which can be any reference point on the

component), is represented by the MeasurementPointReference C.

The actual placement is done with an OnPointPlacement which has two SegmentLocations. One for each PlacementPointReference.

8.1.4 Large Area WireProtections

FIGURE 113:  Large Area WireProtections

In some cases it is necessary to place a wire protection over a greater area of the topology, consisting of more than one TopologySegment (e.g. Tubes with a

�xed length). For these cases the OnWayPlacement de�nes two locations for the start and the end and a path along which the wire protection is placed. The

path is an ordered list of the segments from the start to the end. If a SegmentLocation is used for the start or the end the path must contain these segments
as well.

http://localhost:8080/specifications/vec/v210/classes/partoccurrence/
http://localhost:8080/specifications/vec/v210/classes/placeableelementrole/
http://localhost:8080/specifications/vec/v210/classes/placeableelementspecification/
http://localhost:8080/specifications/vec/v210/classes/placementpointreference/
http://localhost:8080/specifications/vec/v210/classes/measurementpointreference/
http://localhost:8080/specifications/vec/v210/classes/onpointplacement/
http://localhost:8080/specifications/vec/v210/classes/segmentlocation/
http://localhost:8080/specifications/vec/v210/classes/placementpointreference/
http://localhost:8080/specifications/vec/v210/classes/onwayplacement/
http://localhost:8080/specifications/vec/v210/classes/segmentlocation/


For each TopologySegment the use of Start- and End-Node has no semantik relevance. The names are just used to make it possible to identify the

corresponding TopologyNodes correctly e.g. when de�ning the anchor for a SegmentLocation.

8.1.5 Fixed Components (Single Location)

FIGURE 114:  Placement of Fixed Components on a Single Location

Fixed components are elements that are placed on a certain point in the topology, such as Connectors, Fixings and so on. These components are placed with
an OnPointPlacement as shown in the example. If the Component has to be placed on a Node (e.g. a Connector) a NodeLocation is used. If the Component

has to be placed on a Segment a SegmentLocation is used. The usage and constraints for the Locations are the same like the ones for OnWayPlacements.

8.1.6 Fixed Components (Multiple Locations)

FIGURE 115:  Placement of Fixed Components on Multiple Locations

Some components, for example channels or a large connector with more than one segment connection point, may be placed on multiple positions in the

Topology. For example a channel can have two or more reference points (e.g. the outlets) that must be associated to the different positions topology. In

these cases an OnPointPlacement with more than one location is used. In order to identify which location places which point of the component (e.g. the
outlets), a PlaceableElementRole can de�ne PlacementPointReferences which are creating a relationship to the component description.

http://localhost:8080/specifications/vec/v210/classes/topologysegment/
http://localhost:8080/specifications/vec/v210/classes/topologynode/
http://localhost:8080/specifications/vec/v210/classes/segmentlocation/
http://localhost:8080/specifications/vec/v210/classes/onpointplacement/
http://localhost:8080/specifications/vec/v210/classes/nodelocation/
http://localhost:8080/specifications/vec/v210/classes/segmentlocation/
http://localhost:8080/specifications/vec/v210/classes/onwayplacement/
http://localhost:8080/specifications/vec/v210/classes/onpointplacement/
http://localhost:8080/specifications/vec/v210/classes/placeableelementrole/
http://localhost:8080/specifications/vec/v210/classes/placementpointreference/


Imprint · Privacy Statement · Legal Notice

© 2024 prostep ivip association. This work is licensed under CC BY 4.0

  

Published with Wowchemy — the free, open source website builder that empowers creators.

8.1.7 Default Dimensions

FIGURE 116:  efault Dimensions

The diagram illustrates the use of a DefaultDimensionSpeci�cation. The DefaultDimensionSpeci�cation can be used to specify default dimensions

/ tolerances for certain attributes and ValueRanges. In this examples the Speci�cation is used for the length of wires. (indicated by the dimensionType). The

dimensionValueRange de�nes for which value’s of this type, the referenced Tolerance is applicable.

In this example for a wire length lower than 250 mm a Tolerance of +5 mm is allowed, for values between 250 mm and 500 mm a Tolerance of +10 mm is

allowed and for everything above 500 mm a Tolerance of 15 mm is allowed.

http://localhost:8080/imprint/
http://localhost:8080/privacy/
http://localhost:8080/terms/
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://wowchemy.com/?utm_campaign=poweredby
https://github.com/wowchemy/wowchemy-hugo-themes
http://localhost:8080/specifications/vec/v210/classes/defaultdimensionspecification/
http://localhost:8080/specifications/vec/v210/classes/defaultdimensionspecification/
http://localhost:8080/specifications/vec/v210/classes/valuerange/
http://localhost:8080/specifications/vec/v210/classes/tolerance/
http://localhost:8080/specifications/vec/v210/classes/tolerance/

